862 research outputs found

    Low Threshold Parametric Decay Back Scattering Instability in Tokamak ECRH Experiments

    Full text link
    The experimental conditions leading to substantial reduction of backscattering decay instability threshold in ECRH experiments in toroidal devices are analyzed. It is shown that drastic decrease of threshold is provided by non monotonic behavior of plasma density in the vicinity of magnetic island and poloidal magnetic field inhomogeneity making possible localization of ion Bernstein decay waves. The corresponding ion Bernstein wave gain and the parametric decay instability pump power threshold is calculated.Comment: 7 pages, 4 figure

    Spatial and Wavenumber Resolution of Doppler Reflectometry

    Full text link
    Doppler reflectometry spatial and wavenumber resolution is analyzed within the framework of the linear Born approximation in slab plasma model. Explicit expression for its signal backscattering spectrum is obtained in terms of wavenumber and frequency spectra of turbulence which is assumed to be radially statistically inhomogeneous. Scattering efficiency for both back and forward scattering (in radial direction) is introduced and shown to be inverse proportional to the square of radial wavenumber of the probing wave at the fluctuation location thus making the spatial resolution of diagnostics sensitive to density profile. It is shown that in case of forward scattering additional localization can be provided by the antenna diagram. It is demonstrated that in case of backscattering the spatial resolution can be better if the turbulence spectrum at high radial wavenumbers is suppressed. The improvement of Doppler reflectometry data localization by probing beam focusing onto the cut-off is proposed and described. The possibility of Doppler reflectometry data interpretation based on the obtained expressions is shown.Comment: http://stacks.iop.org/0741-3335/46/114

    Dissipation in relativistic superfluid neutron stars

    Get PDF
    We analyze damping of oscillations of general relativistic superfluid neutron stars. To this aim we extend the method of decoupling of superfluid and normal oscillation modes first suggested in [Gusakov & Kantor PRD 83, 081304(R) (2011)]. All calculations are made self-consistently within the finite temperature superfluid hydrodynamics. The general analytic formulas are derived for damping times due to the shear and bulk viscosities. These formulas describe both normal and superfluid neutron stars and are valid for oscillation modes of arbitrary multipolarity. We show that: (i) use of the ordinary one-fluid hydrodynamics is a good approximation, for most of the stellar temperatures, if one is interested in calculation of the damping times of normal f-modes; (ii) for radial and p-modes such an approximation is poor; (iii) the temperature dependence of damping times undergoes a set of rapid changes associated with resonance coupling of neighboring oscillation modes. The latter effect can substantially accelerate viscous damping of normal modes in certain stages of neutron-star thermal evolution.Comment: 25 pages, 9 figures, 1 table, accepted for publication in MNRA

    Quasi-normal modes of superfluid neutron stars

    Full text link
    We study non-radial oscillations of neutron stars with superfluid baryons, in a general relativistic framework, including finite temperature effects. Using a perturbative approach, we derive the equations describing stellar oscillations, which we solve by numerical integration, employing different models of nucleon superfluidity, and determining frequencies and gravitational damping times of the quasi-normal modes. As expected by previous results, we find two classes of modes, associated to superfluid and non-superfluid degrees of freedom, respectively. We study the temperature dependence of the modes, finding that at specific values of the temperature, the frequencies of the two classes of quasi-normal modes show avoided crossings, and their damping times become comparable. We also show that, when the temperature is not close to the avoided crossings, the frequencies of the modes can be accurately computed by neglecting the coupling between normal and superfluid degrees of freedom. Our results have potential implications on the gravitational wave emission from neutron stars.Comment: 16 pages, 7 figures, 2 table

    Cooling of Akmal-Pandharipande-Ravenhall neutron star models

    Full text link
    We study the cooling of superfluid neutron stars whose cores consist of nucleon matter with the Akmal-Pandharipande-Ravenhall equation of state. This equation of state opens the powerful direct Urca process of neutrino emission in the interior of most massive neutron stars. Extending our previous studies (Gusakov et al. 2004a, Kaminker et al. 2005), we employ phenomenological density-dependent critical temperatures T_{cp}(\rho) of strong singlet-state proton pairing (with the maximum T_{cp}^{max} \sim 7e9 K in the outer stellar core) and T_{cnt}(\rho) of moderate triplet-state neutron pairing (with the maximum T_{cnt}^{max} \sim 6e8 K in the inner core). Choosing properly the position of T_{cnt}^{max} we can obtain a representative class of massive neutron stars whose cooling is intermediate between the cooling enhanced by the neutrino emission due to Cooper pairing of neutrons in the absence of the direct Urca process and the very fast cooling provided by the direct Urca process non-suppressed by superfluidity.Comment: 9 pages, 6 figures; accepted for publication in MNRA
    • …
    corecore