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ABSTRACT
We analyse damping of oscillations of general relativistic superfluid neutron stars. To this
aim we extend the method of decoupling of superfluid and normal oscillation modes first
suggested in Gusakov & Kantor. All calculations are made self-consistently within the finite
temperature superfluid hydrodynamics. The general analytic formulas are derived for damping
times due to the shear and bulk viscosities. These formulas describe both normal and superfluid
neutron stars and are valid for oscillation modes of arbitrary multipolarity. We show that (i)
use of the ordinary one-fluid hydrodynamics is a good approximation, for most of the stellar
temperatures, if one is interested in calculation of the damping times of normal f modes, (ii)
for radial and p modes such an approximation is poor and (iii) the temperature dependence
of damping times undergoes a set of rapid changes associated with resonance coupling of
neighbouring oscillation modes. The latter effect can substantially accelerate viscous damping
of normal modes in certain stages of neutron-star thermal evolution.
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1 IN T RO D U C T I O N

Neutron stars (NSs) are compact objects with the mass M ∼ M�,
circumferential radius R ∼ 10 km and the central density ρc sev-
eral times higher than the nuclear density ρ0 ≈ 2.8 × 1014 g cm−3.
They are interesting because of extreme conditions in their interiors
and a wide variety of associated astrophysical phenomena. In par-
ticular, internal instabilities or external perturbations can excite NS
oscillations, which are potentially detectable by the next-generation
gravitational wave interferometers (see e.g. Andersson & Kokkotas
2001; Andersson 2003; Owen 2010). It is very probable that quasi-
periodic oscillations of electromagnetic radiation observed in the
tails of the giant gamma-ray flares are connected with oscillations
in NS crust (e.g. Israel et al. 2005; Strohmayer & Watts 2005, 2006;
Watts & Strohmayer 2007), and that seismology would become a
significant source of information about NSs in the nearest future
(Abbot et al. 2007; Andersson et al. 2011; Watts 2011).

For the correct interpretation of already existing and future ob-
servations one requires a well-developed theory of oscillating NSs.
It should, in particular, (i) be based on the general relativity theory,
since NSs are relativistic objects; (ii) employ an adequate model
of superdense matter, including realistic equation of state and pa-
rameters of baryon superfluidity; and (iii) correctly account for the
effects of baryon superfluidity on the hydrodynamics of NS matter.

� E-mail: gusakov@astro.ioffe.ru

Let us discuss briefly a (key) role of superfluidity. According to
numerous microscopic calculations (see e.g. Lombardo & Schulze
2001), baryon matter in the internal layers of NSs becomes super-
fluid at T � 108–1010 K. It is very difficult to interpret the observa-
tional data on pulsar glitches (see e.g. Chamel & Haensel 2008) and
cooling of NSs (Yakovlev, Levenfish & Shibanov 1999; Yakovlev &
Pethick 2004) without invoking baryon superfluidity. Recent real-
time observations of cooling NS in Cassiopea A supernova remnant
(Heinke & Ho 2010) also present a strong argument in favour of the
existence of baryon superfluidity in the NS core. The observations
were explained by Shternin et al. (2011) and Page et al. (2011) within
a scenario, suggested for the first time in Gusakov et al. (2004) and
Page et al. (2004), and assuming mild neutron superfluidity (with
maximum neutron critical temperatures Tcn max ∼ 7−9 × 108 K)
and strong proton superconductivity (with maximum proton crit-
ical temperatures Tcp max � 2−3 × 109 K) in the NS core.

Combined analysis of all the three factors (i)–(iii) is a formidable
task for the oscillation theory so in the literature they were con-
sidered successively. The foundations of the relativistic theory of
stellar oscillations were laid 50 yr ago by Chandrasekhar (1964) and
Thorne & Campolattaro (1967) and were further developed in many
subsequent papers (see e.g. Detweiler & Ipser 1973; Ipser & Thorne
1973; Lindblom & Detweiler 1983; Detweiler & Lindblom 1985;
Cutler & Lindblom 1987; Cutler, Lindblom & Splinter 1990; Chan-
drasekhar & Ferrari 1991; Kokkotas & Schutz 1992; Yoshida & Lee
2003a; Lin, Andersson & Comer 2008 and a review of Kokkotas &
Schmidt 1999). When studying oscillations of NSs, most of these
works considered ordinary one-fluid relativistic hydrodynamics.
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Meanwhile it is well known that superfluidity leads to appear-
ance of additional velocity fields, describing the superfluid degrees
of freedom (e.g. Khalatnikov & Lebedev 1982; Khalatnikov 1989;
Carter & Khalatnikov 1992). This substantially complicates the hy-
drodynamics of NS matter, making it multifluid (Mendell 1991a,b;
Gusakov & Andersson 2006). In addition, superfluidity affects the
kinetic coefficients (such as bulk and shear viscosities) and also re-
quires additional viscous coefficients to be introduced (see Gusakov
2007; Gusakov & Kantor 2008 for details).

Oscillations of superfluid NSs have been studied actively only
in the last two decades (see e.g. Lee 1995; Lindblom & Mendell
2000; Prix & Rieutord 2002; Yoshida & Lee 2003b; Prix, Comer &
Andersson 2004; Samuelsson & Andersson 2009; Wong, Lin &
Leung 2009; Passamonti & Andersson 2011, 2012), starting from
the pioneering papers by Epstein (1988) and Lindblom & Mendell
(1994). However, most of these works neglect general relativity ef-
fects and employ zero temperature (T = 0) limit of superfluid hydro-
dynamics (i.e. hydrodynamics, applicable only at T = 0). Within the
general relativity theory oscillations were discussed only by Comer,
Langlois & Lin (1999), Andersson, Comer & Langlois (2002),
Yoshida & Lee (2003a), Gusakov & Andersson (2006), Lin et al.
(2008), Kantor & Gusakov (2011) and Chugunov & Gusakov
(2011), but most of these works used zero temperature hydrody-
namics. Moreover, in some of these papers (e.g. Andersson et al.
2002; Lin et al. 2008) the presence of superfluid component was
modelled by an artificial (polytropic) equation of state which does
not represent any specific microphysical model.

Only in the recent papers (Gusakov & Andersson 2006;
Chugunov & Gusakov 2011; Kantor & Gusakov 2011) an attempt
was made to self-consistently calculate the oscillation spectra using
a realistic model of superdense matter and allowing for the effects
of finite stellar temperatures. It was shown that in many cases an
approximation T = 0 is not justified and, moreover, it can lead to
qualitatively incorrect results (Chugunov & Gusakov 2011; Kantor
& Gusakov 2011).

Of particular interest is the question of how superfluidity influ-
ences dissipation of NS oscillations. It is of extreme importance,
for instance, for understanding physical conditions under which a
rotating NS becomes unstable with respect to excitation of various
oscillations (e.g. r modes), and for estimating gravitational radiation
from such stars (e.g. Andersson & Kokkotas 2001).

There were several serious and successful attempts to allow for
the effects of superfluidity when studying the dissipation of oscil-
lations in NSs (see e.g. Lindblom & Mendell 1995, 2000; Lee &
Yoshida 2003; Andersson, Glampedakis &Haskell 2009; Haskell,
Andersson & Passamonti 2009; Haskell & Andersson 2010; Pas-
samonti & Glampedakis 2012), but all of them considered New-
tonian stars and used the T = 0 superfluid hydrodynamics. The
self-consistent analysis of dissipation in superfluid NSs was only
recently performed for a simple case of a radially oscillating NS
(Kantor & Gusakov 2011).

The aim of this paper is to fill this gap and to consider, for the
first time, dissipation of non-radial oscillations in general relativistic
superfluid NSs employing realistic microphysics input with accurate
treatment of the effects of finite stellar temperatures.

The paper is organized as follows. Relativistic superfluid hydro-
dynamics is briefly reviewed in Section 2. Section 3 discusses an
unperturbed star and introduces variables describing small devia-
tions of NS from equilibrium. In Section 4 we derive expressions
for the oscillation energy and its dissipation rates due to bulk and
shear viscosities. In Section 5 the equations that govern oscillations
of superfluid NSs are explicitly written out. Section 6 describes the

approach to study dissipation of superfluid NS oscillations. This
approach is applied for a detailed numerical analysis of realistic
models of oscillating NSs in Section 7. Section 8 presents a sum-
mary of our results.

In what follows, we use the system of units in which c = kB = 1,
where c is the speed of light and kB is the Boltzmann constant.

2 D ISSIPATIVE SUPERFLUID
H Y D RO DY NA M I C S

In this paper we consider, for simplicity, npe matter in NS cores,
which is matter composed of neutrons (n), protons (p) and electrons
(e). Because both protons and neutrons can be in the superfluid
state, one has to use the relativistic hydrodynamics of superfluid
mixtures to study oscillations of NSs. Here we briefly discuss the
corresponding equations to establish notations and to make the
presentation more self-contained. Our consideration closely follows
the papers by Gusakov & Andersson (2006), Gusakov (2007) and,
especially, Kantor & Gusakov (2011). The reader is referred to these
works for more details.

The main distinctive feature of superfluid hydrodynamics is the
presence of several velocity fields in the mixture. In our case, these
are the four-velocity uμ of the ‘normal’ (non-superfluid) component
of matter (electrons and Bogoliubov excitations of neutrons and
protons) as well as the ‘four-velocities’ of superfluid neutrons v

μ
s(n)

and superfluid protons v
μ
s(p). In what follows instead of the velocities

v
μ
s(n) and v

μ
s(p) it will be convenient to use the four-vectors w

μ
(i) =

μi[v
μ
s(i) − uμ], where μi is the relativistic chemical potential for

particle species i = n or p. A presence of several velocity fields
modifies the expressions for the current densities of neutrons j

μ
(n)

and protons j
μ
(p),

j
μ
(i) = niu

μ + Yikw
μ
(k) (1)

in comparison with the standard expression j
μ
(i) = niu

μ. The elec-
tron current density j

μ
(e) has a standard form

j
μ
(e) = neu

μ. (2)

Here and below the subscripts i and k refer to nucleons: i, k = n, p;
nl is the number density of particle species l = n, p and e. Unless
otherwise stated the summation is assumed over the repeated nu-
cleon indices i, k and over the spacetime indices μ, ν, . . . (Greek
letters). In equation (1) Yik is the relativistic entrainment matrix,
which is a generalization of the concept of superfluid density (see
e.g. Khalatnikov 1989) to the case of relativistic mixtures. In the
non-relativistic theory, a similar matrix was first considered by An-
dreev & Bashkin (1975). The matrix Yik is symmetric, Yik = Yki, and
is expressed in terms of the Landau parameters F ik

1 of asymmetric
nuclear matter and universal functions of temperature, �i, as de-
scribed in Gusakov, Kantor & Haensel (2009b). In beta-equilibrium
it can be presented as a function of density ρ and the combinations
T/Tcn and T/Tcp: Yik = Yik(ρ, T/Tcn, T/Tcp), where T is the tempera-
ture, Tcn(ρ) and Tcp(ρ) are the density-dependent neutron and proton
critical temperatures, respectively. If, for example, T > Tcn then all
neutrons are normal. The important property of the matrix Yik is
that for any non-superfluid species l = n or p, the corresponding
elements Ylk of this matrix vanish.

In this paper we consider NS oscillations, whose frequencies are
well below the electron and proton plasma frequencies. In that case
the quasi-neutrality condition, ne = np, should hold in an oscillating
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star, from which it follows (for a non-rotating non-magnetized NS)
j

μ
(p) = j

μ
(e) or, in view of equations (1) and (2),

Ypkw
μ
(k) = 0. (3)

Below we assume that this condition is always satisfied. It relates
the four-vectors w

μ
(n) and w

μ
(p).

In what follows, along with uμ and w
μ
(i) it will be convenient to in-

troduce the quantity Xμ, describing superfluid degrees of freedom,
as well as the quantity which we call the ‘baryon four-velocity’
U

μ
(b) (note, however, that it is not a four-velocity in the usual

sense, because generally U
μ
(b)U(b) μ �= −1, see equation 45 and the

footnote 4). They are defined by the formulas

Xμ = Ynkw
μ
(k)

nb
, (4)

U
μ
(b) = uμ + Xμ, (5)

where nb = nn + np is the baryon number density. Note that, as
follows from equations (1)–(3), the baryon current density j

μ
(b) =

j
μ
(n) + j

μ
(p) is related to U

μ
(b) by the standard equation,

j
μ
(b) = nb U

μ
(b), (6)

while j
μ
(e) equals

j
μ
(e) = ne

[
U

μ
(b) − Xμ

]
. (7)

Together with the quasi-neutrality condition (ne = np) and
equation (3), the equations of superfluid hydrodynamics include
(Gusakov 2007) the following.

(i) Continuity equations for baryons (b) and electrons (e):

j
μ
(b); μ = 0, (8)

j
μ
(e); μ = 0. (9)

(ii) Energy–momentum conservation:

T μν
; μ = 0, (10)

T μν = (P + ε) uμuν + Pgμν + Yik

(
w

μ
(i)w

ν
(k) + μi w

μ
(k)u

ν

+μk wν
(i)u

μ
) + τμν, (11)

τμν = −η Hμγ Hνδ

(
uγ ;δ + uδ;γ − 2

3
gγ δ uε

;ε

)

−ξ1n Hμν
[
Ynkw

γ
(k)

]
;γ

− ξ2 Hμν uγ
;γ . (12)

(iii) Potentiality condition for superfluid motion of neutrons:

∂ν

[
w(n)μ + (μn + κn)uμ

] = ∂μ

[
w(n)ν + (μn + κn)uν

]
, (13)

κn = −ξ3n

[
Ynkw

μ
(k)

]
;μ

− ξ4n uμ
;μ. (14)

(iv) The second law of thermodynamics:

dε = T dS + μe dne + μi dni + Yik

2
d

[
wα

(i)w(k)α

]
. (15)

In formulas (8)–(15) gμν is the metric tensor; Hμν ≡ gμν + uμuν ;
∂μ ≡ ∂/(∂xμ); P, ε, S and μe are the pressure, energy density,
entropy density and relativistic electron chemical potential, respec-
tively. These quantities are related by the formula:

P = −ε + μene + μini + TS. (16)

Finally, η is the shear viscosity coefficient and ξ 1n, ξ 2, ξ 3n and ξ 4n are
the bulk viscosity coefficients. Because of the Onsager symmetry
principle, one has

ξ1n = ξ4n. (17)

Moreover, if the bulk viscosities are generated solely by the di-
rect or modified URCA processes, one has an additional constraint
(Gusakov 2007)

ξ 2
1n = ξ2ξ3n. (18)

In the absence of superfluidity the only non-zero coefficient is ξ 2 –
the ordinary bulk viscosity.

To close the system describing superfluid hydrodynamics one
should put two additional constraints on the four-vectors uμ and
w

μ
(n):

uμuμ = −1, (19)

uμw
μ
(n) = 0. (20)

The first constraint is the standard normalization condition while
the second one indicates that the comoving frame, in which we
measure various thermodynamic quantities (e.g. ni, ε, . . . ), is de-
fined by the condition uμ = (1, 0, 0, 0) (Gusakov & Andersson
2006; Gusakov 2007). Using equations (1), (11), (12), (19) and (20)
one then immediately finds that nl = −uμj

μ
(l) (l = n, p, e) and ε =

uμuνTμν .
Making use of the hydrodynamics described above, one can de-

rive the entropy generation equation, valid for superfluid matter.
Following the derivation of the similar equation (33) in Gusakov
(2007), one arrives at

Sμ
;μ = −κn

T

[
Ynkw

μ
(k)

]
;μ

− τμν
(uν

T

)
;μ

, (21)

where the entropy density current Sμ is1

Sμ = Suμ − uν

T
τμν. (22)

When writing equation (21) we neglected small dissipative terms,
as it is discussed in Gusakov (2007). Introducing

Qbulk ≡
{√

ξ3n

[
Ynkw

μ
(k)

]
;μ

+
√

ξ2 uμ
;μ

}2
, (23)

Qshear ≡ η Hμγ Hνδ

(
uγ ;δ + uδ;γ − 2

3
gγ δ uε

;ε

)
uν;μ

= η

2
Hμγ Hνδ

(
uγ ;δ + uδ;γ − 2

3
gγ δ uε

;ε

)

×
(

uν;μ + uμ;ν − 2

3
gμν uε

;ε

)
, (24)

1 Note that, in Gusakov (2007), there is an additional term in the expression
for Sμ, so that

Sμ = Suμ − uν

T
τμν − κn

T
Ynkw

μ
(k).

The last term here appears naturally in the entropy generation equation.
However, strictly speaking, it is small and should be neglected if one takes
into account only the largest dissipative terms in the equations of superfluid
hydrodynamics (this is the standard approximation; see Gusakov 2007 and
section 140 of Landau & Lifshitz 1987 for an explanation of what we mean
by the ‘largest terms’). It remains to note that the terms similar to the last
term in the expression for Sμ also appear in the most general form of the
non-relativistic superfluid dissipative hydrodynamics formulated by Clark
(for details see the book by Putterman 1974).
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equation (21) can be rewritten as

T (Suμ);μ = Qbulk + Qshear. (25)

To derive equation (25) we used equations (17) and (18), as well as
the fact that for the tensor (12) τμν uν = 0.2

3 BASIC EQUATIONS

3.1 An unperturbed star

An equilibrium configuration of a non-rotating superfluid NS was
analysed in detail in section 3 of Gusakov & Andersson (2006).
Here we present only the main results of this analysis, which will
be used in what follows.

The metric of a spherically symmetric, non-rotating NS in equi-
librium has the form

− ds2 ≡ g
(0)
αβ dxαdxβ = −eνdt2 + eλdr2 + r2(dθ2 + sin2θ dϕ2),

(26)

where r, θ and ϕ are the spatial coordinates in the spherical frame
with the origin at the stellar centre; t is the time coordinate; ν(r) and
λ(r) are the metric coefficients for an unperturbed star.

The four-velocity uμ, generally defined as

uμ = dxμ

ds
, (27)

in equilibrium equals

u0 = e−ν/2, u1 = u2 = u3 = 0. (28)

We assume that in the unperturbed star superfluid components are
at rest with respect to the normal component. In that case the four-
vectors w

μ
(i) satisfy

w
μ
(n) = w

μ
(p) = 0. (29)

Using equations (4), (5), (28) and (29), one has for the baryon
four-velocity

U 0
(b) = e−ν/2, U 1

(b) = U 2
(b) = U 3

(b) = 0. (30)

In addition, the following conditions of hydrostatic equilibrium
must hold for an unperturbed star,

dP

dr
= −1

2
(P + ε)

dν

dr
, (31)

d

dr

(
μneν/2

) = 0. (32)

The last condition should be only used in the stellar region where
neutrons are superfluid (hereafter the SFL-region). One can show
(Gusakov & Andersson 2006) that if an unperturbed NS is addition-
ally in beta-equilibrium, i.e. the imbalance δμ of chemical potentials
vanishes,

δμ ≡ μn − μp − μe = 0, (33)

then the SFL-region must also be in thermal equilibrium, with the
redshifted internal stellar temperature T∞ constant over this region,

T ∞ ≡ T eν/2 = constant. (34)

2 This equality holds true only if one neglects the thermal conductivity, as
we assume in equation (12).

In what follows we assume that the conditions (33) and (34) are
satisfied in the entire core of the unperturbed NS. In the latter case
equation (16) for the equilibrium pressure can be rewritten as

P = −ε + μnnb + TS. (35)

It should also be stressed that, as long as we neglected the tem-
perature effects when calculating the equilibrium stellar model, the
hydrostatic structure of the unperturbed superfluid NS is indistin-
guishable from that of the normal (non-superfluid) star of the same
mass.

3.2 Small departures from equilibrium

The metric of a perturbed star can be presented in the form

− ds2 ≡ gαβdxαdxβ =
(
g

(0)
αβ + δgαβ

)
dxα dxβ. (36)

From here on the symbol δ denotes Eulerian perturbations, so that
δgαβ corresponds to small metric perturbations in the course of
stellar oscillations.

Since we study oscillations of a non-rotating non-magnetized NS
and neglect the effects of crystalline crust, all the perturbations in the
system are of even parity.3 In that case, in the appropriately chosen
gauge δgαβ dxαdxβ can be written as (we follow the notations of
Cutler et al. 1990)

δgαβ dxαdxβ = −eν rl H0(r) Ym
l eiωt dt2 − 2 i ω rl+1 H1(r)

×Ym
l eiωt dtdr − eλ rl H2(r) Ym

l eiωt dr2

−rl+2 K(r) Ym
l eiωt (dθ2 + sin2θ dϕ2). (37)

In equation (37) we assumed that all the perturbations depend on
t as eiωt. In addition, we already expanded the perturbations into
series in spherical harmonics Ym

l , and considered a single harmonic
with fixed l and m. The unknown functions H0, H1, H2 and K depend
on r only, and should be determined from the linearized Einstein
equations, describing NS oscillations (see Section 5). Depending
on l the gauge of the metric can be further specialized (e.g. Cutler
et al. 1990). Namely, one can choose the gauge such that for l = 0
(radial oscillations) H1 = K = 0, for l = 1 (dipole oscillations) K =
0 and for l ≥ 2 H0 = H2.

As follows from definition (27), in the perturbed star the four-
velocity uμ of the normal component equals, in the linear approxi-
mation,

u0 = 1√−g00
= e−ν/2

(
1 − 1

2
rl H0 Ym

l eiωt

)
, (38)

uj = vj e−ν/2, (39)
where

vj ≡ dxj

dt
(40)

is the jth component of the velocity of the normal liquid. Here
and below j is the spatial index, j = r, θ and ϕ. Similarly, using
equations (19) and (20) one can show that for small deviations from
equilibrium

w0
(i) = 0, (41)

while the spatial components w
j
(i) are small quantities, linear in

perturbation (for a similar consideration, see Gusakov & Andersson

3 A more detailed argument can be found in Thorne & Campolattaro (1967);
see also Regge & Wheeler (1957).
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2006). In what follows, instead of the four-vectors w
μ
(i) (which are

constrained by equation 3) it will be often more convenient to use
the quantity Xμ, defined by (4). For small perturbations

X0 = 0, (42)

while Xj is non-zero but small (linear in perturbations).
Using equations (38), (39) and (42), as well as definition (5), it

is easy to write out an expression for the baryon four-velocity U
μ
(b)

in the perturbed star,

U 0
(b) = 1√−g00

= e−ν/2

(
1 − 1

2
rl H0 Ym

l eiωt

)
, (43)

U
j
(b) = v

j
(b) e−ν/2, (44)

where the last equality is the definition of the jth component of
the baryon velocity v

j
(b) (linear in perturbation). Note that, as fol-

lows from equations (43) and (44), in the linear approximation the
normalization condition for the baryon four-velocity is the same

U(b) μU
μ
(b) = −1 (45)

as for uμ.4 In what follows instead of the velocities vj and v
j
(b),

it will be more convenient to use the corresponding Lagrangian
displacements. They are defined by the equalities

vj ≡ ∂ξ j

∂t
= iωξj , (46)

v
j
(b) ≡ ∂ξ

j
(b)

∂t
= iωξ

j
(b). (47)

Introducing also the analogue of the Lagrangian displacement ξ
j
(sfl)

for Xj, one can write

Xj ≡ e−ν/2 ∂ξ
j
(sfl)

∂t
= iω e−ν/2 ξ

j
(sfl). (48)

In terms of the Lagrangian displacements equality (5) can be pre-
sented as

ξ
j
(b) = ξ j + ξ

j
(sfl). (49)

Because of the spherical symmetry of the unperturbed star it is
sufficient to consider Lagrangian displacements ξ j, ξ

j
(b) and ξ

j
(sfl) of

the form (see also a note after equation 90)

ξ j = [
ξ r , ξ θ , ξϕ

] = [
e−λ/2 rl−1 W (r) Y 0

l ,

−rl−2 V (r) ∂θY
0
l , 0

]
eiωt , (50)

ξ
j
(b) = [

ξ r
(b), ξ θ

(b), ξ
ϕ
(b)

] = [
e−λ/2 rl−1 Wb(r) Y 0

l ,

−rl−2 Vb(r) ∂θY
0
l , 0

]
eiωt , (51)

ξ
j
(sfl) = [

ξ r
(sfl), ξ θ

(sfl), ξ
ϕ
(sfl)

]
= [

e−λ/2 rl−1 Wsfl(r) Y 0
l , −rl−2 Vsfl(r) ∂θY

0
l , 0

]
eiωt , (52)

4 However, beyond the linear approximation, equations (4), (5), (19) and
(20) yield U(b) μU

μ
(b) = −1 + YniYnk w(i) μw

μ
(k)/n

2
b. The normalization con-

dition (45) is generally not fulfilled because the reference frame in which
U

μ
(b) = (1, 0, 0, 0) is not comoving [i.e. j

μ
(b)U(b) μ �= −nb in that reference

frame]. As it was already indicated in Section 2, all thermodynamic variables
are measured in the reference frame, in which uμ = (1, 0, 0, 0).

where W, V, Wb, Vb, Wsfl and Vsfl are some functions of r
to be derived from oscillation equations. In equations (50)–(52)
Y 0

l = √
(2l + 1)/(4π) Pl(cos θ ), where Pl is the Legendre polyno-

mial. Here and below we consider only spherical harmonics with
m = 0. We can do this without any loss of generality, because,
due to the spherical symmetry of the unperturbed star, oscillation
eigenfrequencies as well as eigenfunctions H0, H1,. . . , Wsfl and Vsfl,
introduced in this section, cannot depend on m (see e.g. Thorne &
Campolattaro 1967).

It follows from equations (49) and (50)–(52) that

Wb = W + Wsfl, (53)

Vb = V + Vsfl. (54)

4 DA M P I N G O F O S C I L L AT I O N S D U E TO T H E
BU LK AND SHEAR V I SCOSI TI ES: G ENERAL
F O R M U L A S

In this paper among the possible mechanisms of dissipation of
oscillation energy we take into account damping due to the bulk
and shear viscosities as well as due to radiation of gravitational
waves. Dissipation makes the oscillation frequency ω complex, so
that it can be presented in the form

ω = σ + i

τ
, (55)

where σ is the real part of the frequency and τ is the characteristic
damping time. Assuming that damping is weak, in the linear ap-
proximation one can present the following standard expression for
τ ,

1

τ
= − 1

2Emech

dEmech

dt
, (56)

where Emech is the mechanical energy of oscillations and dEmech/dt is
the dissipation rate of the mechanical energy, which can be presented
as

dEmech

dt
= −Wbulk − Wshear − Wgrav, (57)

where Wbulk, Wshear and Wgrav are the energy, dissipated per unit
time due to the bulk viscosity, shear viscosity and gravitational ra-
diation, respectively. Introducing partial damping times τ bulk, τ shear

and τ grav according to

1

τbulk
= Wbulk

2Emech
, (58)

1

τshear
= Wshear

2Emech
, (59)

1

τgrav
= Wgrav

2Emech
, (60)

one can rewrite the expression for τ as
1

τ
= 1

τgrav
+ 1

τshear
+ 1

τbulk
. (61)

Thus, to calculate τ we need to know the mechanical energy Emech

of NS oscillations, as well as the quantities Wbulk, Wshear and Wgrav.

4.1 Mechanical energy

The general relativistic expression for the mechanical energy of
oscillating normal (non-superfluid) NS was obtained by (Thorne &
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Campolattaro 1967, see also Meltzer & Thorne 1966). Their result
can be easily generalized to the case of superfluid matter. Mechani-
cal energy Emech is related to the averaged over the oscillation period
2π/σ kinetic energy Ekin by the standard formula:

Emech = 2 Ekin. (62)

Thus, to determine Emech one needs to know Ekin. One can write
(e.g. Thorne & Campolattaro 1967)

Ekin =
∫

star
εkin eν/2 dV , (63)

where dV = r2 eλ/2 sinθ dθ dϕ dr is the proper volume element,
εkin is the kinetic energy density measured in the locally flat co-
ordinate system x̃μ [with the metric −ds2 = g̃μνdx̃μdx̃ν , where
g̃μν = diag(−1, 1, 1, 1)], which is at rest with respect to the un-
perturbed star. If the NS matter is normal, εkin is given by

εkin = 1

2
(P + ε)

[
(ũr )2 + (ũθ )2 + (ũϕ)2

]
. (64)

Here

ũj = ∂x̃j

∂xμ
uμ ≈ e−ν/2

[
eλ/2 vr , r vθ , r sinθ vϕ

]
(65)

is the physical velocity of the fluid in the locally flat coordinate
system x̃μ. For superfluid matter equation (64) should be modified,
because in this case not only motion of the normal liquid component
contributes to εkin but also that of the superfluid component. Using
formula (56) of Kantor & Gusakov (2009) one obtains 5

εkin = 1

2

{
(P + ε)[ũj ]2 + Yik

×
[
μi w̃

j
(k)ũj + μk w̃

j
(i)ũj + w̃

j
(i)w̃(k) j

]}
, (66)

where w̃
j
(i) = [∂x̃j /∂xμ] w

μ
(i). Taking into account equations (3)–(5)

and (35), equation (66) can be rewritten as

εkin = 1

2
(P + ε)

{[
Ũ

j
(b)

]2
+ y

[
X̃j

]2
}

, (67)

where we neglected ‘temperature’ term TS in expression (35). In
equation (67)

y ≡ nbYpp

μn(YnnYpp − Y 2
np)

− 1, (68)

Ũ
j
(b) = ∂x̃j

∂xμ
U

μ
(b) = e−ν/2

[
eλ/2 vr

(b), r vθ
(b), r sinθ v

ϕ
(b)

]
, (69)

X̃j = ∂x̃j

∂xμ
Xμ = [

eλ/2 Xr, r Xθ , r sinθ Xϕ
]
. (70)

Now, using equations (47), (48), (51) and (52) let us express (69)
and (70) through the functions Wb(r), Vb(r), Wsfl(r) and Vsfl(r), and
then substitute equation (67) for εkin into (63). After integrating
equation (63) over sinθ dθ dϕ (in the same way as it was done in
Thorne & Campolattaro 1967) and making use of equation (62),
one arrives at the following expression for Emech:

Emech(t) = Emech (b)(t) + Emech (sfl)(t), (71)

5 This expression is analogous to the corresponding formula for the kinetic
energy density of a non-relativistic superfluid mixture, obtained by Andreev
& Bashkin (1975), see their equation (7).

where we tentatively presented Emech as a sum of two terms related
to the baryon motion as a whole Emech (b) and an additional term
Emech (sfl) appearing because of the superfluid motion:

Emech (b)(t) = 1

2
σ 2 e−2t/τ

×
∫ R

0
(P + ε) e(λ−ν)/2 r2l

[
W 2

b + l(l + 1) V 2
b

]
dr,

(72)

Emech (sfl)(t) = 1

2
σ 2 e−2t/τ

×
∫ R

0
(P + ε) e(λ−ν)/2 r2l y

[
W 2

sfl + l(l + 1) V 2
sfl

]
dr.

(73)

Strictly speaking, the functions Wb(r), Vb(r), Wsfl(r) and Vsfl(r) in
these formulas are complex, i.e. instead of, for example, Wb(r)2

one should write |Wb(r)|2. Note, however, that all these functions
[as well as H0(r), H1(r), H2(r) and K(r)] are defined up to the
same arbitrary complex multiplicative constant. Since σ � 1/τ

(dissipation is weak), one can always choose the constant in such a
way that the real parts of all these functions would be much greater
than their imaginary parts (e.g. Re[H2(r)] � Im[H2(r)]), so that one
could neglect their ‘complexity’. From here on, unless otherwise
stated, by the functions Wb(r), Vb(r), Wsfl(r), Vsfl(r), H0(r), H1(r),
H2(r) and K(r) we mean their real parts.

In the absence of superfluidity Wsfl = Vsfl = 0, Wb = W and
Vb = V. In that case equation (72) gives a mechanical energy of a
non-superfluid star that coincides, up to notations, with the corre-
sponding expression (29) of Thorne & Campolattaro (1967).

4.2 Dissipation rates

The damping time τ grav due to radiation of gravitational waves can
be obtained from the equations, describing linear oscillations of
NSs (see Section 5). The goal of the present section is to determine
the dissipation rate of oscillation energy due to the bulk Wbulk and
shear Wshear viscosities and, as a consequence, the damping times
τ bulk and τ shear.

For that, we turn to the entropy generation equation (25). Using
it, one can find rate of change of the (averaged over the oscillation
period) thermal energy of a star dEth/dt due to bulk and shear
viscosities. Following the derivation of equation (34) in Gusakov,
Yakovlev & Gnedin (2005), one obtains

dEth

dt
=

∫
star

(Qbulk + Qshear) eν dV , (74)

where Qbulk and Qshear are the values of Qbulk and Qshear, averaged
over the oscillation period 2π/σ (see equations 23 and 24).

Obviously, the increase in the thermal energy Eth is accompanied
by the decrease of the oscillation energy Emech, i.e.

Wbulk =
∫

star
Qbulk eν dV , (75)

Wshear =
∫

star
Qshear eν dV . (76)

Using these equations, as well as formulas (23), (24), (58) and (59),
and the definitions of Section 3.2, one gets, after rather lengthy
calculations,
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1

τbulk
= σ 2

4Emech(0)

∫ R

0
r2(l+1) eλ/2

[√
ξ2 β1 +

√
ξ3n β2

]2
dr,

(77)

1

τshear
= σ 2

2Emech(0)

∫ R

0
η r2(l−1) eλ/2

{
3

2
(α1)2

+2l(l + 1) (α2)2 + l(l + 1)

[
1

2
l(l + 1) − 1

]
V 2

}
dr, (78)

where

β1(r) = K + 1

2
H2 − 1

r
e−λ/2

[
dW

dr
+ 1

r
(l + 1) W

]
− l(l + 1)

V

r2
,

(79)

β2(r) = −1

r
e−λ/2

[
d(nb Wsfl)

dr
+ 1

r
(l + 1) nb Wsfl

]

−l(l + 1)
nb Vsfl

r2
, (80)

α1(r) = r2

3

{
2

r
e−λ/2

[
dW

dr
+ (l − 2)

W

r

]

+ K − H2 − l(l + 1)
V

r2

}
, (81)

α2(r) = r

2

[
dV

dr
+ (l − 2)

V

r
− eλ/2 W

r

]
e−λ/2. (82)

As for the mechanical energy (71), to obtain from these formu-
las τ bulk and τ shear for a non-superfluid star, one has to put Wsfl =
Vsfl = 0. In that case our equations (77) and (78) should coincide
with the corresponding formulas (5) and (6) of Cutler et al. (1990).
Unfortunately, direct comparison of these formulas reveals that our
τ bulk and τ shear appear to be two times larger. Using, as tests ex-
amples, damping of (i) NS radial oscillations, (ii) p modes in the
NS envelopes and (iii) sound waves in the non-superfluid matter
of NSs, we checked that our results reproduce those of Gusakov
et al. (2005), Chugunov & Yakovlev (2005) and Kantor & Gusakov
(2009), obtained in a quite a different way.

5 O S C I L L AT I O N E QUAT I O N S

In order to calculate τ bulk and τ shear one has to determine the os-
cillation eigenfrequencies σ and eigenfunctions H0, H1, H2, K, Wb,
Vb, Wsfl and Vsfl. To do that one needs to formulate oscillation equa-
tions. Since the dissipation is weak, when deriving the oscillation
equations one can neglect the dissipative terms in the superfluid
hydrodynamics of Section 2 and put τμν = 0 and κn = 0.

As it was shown in Gusakov & Kantor (2011), equations describ-
ing small linear oscillations of an NS include the following.

(i) Continuity equations for baryons (8) and electrons (9) that
can be written in terms of the baryon and electron number density
perturbations, δnb and δne, as

δnb = i

ω e−ν/2

[
∂j (nb) U

j
(b) + nb U

μ
(b) ;μ

]
, (83)

δne = δne (norm) + δne (sfl), (84)

where j is the spatial index and we defined

δne (norm) ≡ i

ω e−ν/2

[
∂j (ne) U

j
(b) + ne U

μ
(b) ;μ

]
, (85)

δne (sfl) ≡ − i

ω e−ν/2

[
∂j (ne) Xj + ne Xμ

;μ

]
. (86)

(ii) Einstein equations, which can schematically be presented as

δ(Rμν − 1/2 gμν R) = 8πG δT μν, (87)

where the perturbation δTμν of the energy–momentum tensor (11)
can be expressed in terms of the perturbations of baryon four-
velocity δU

μ
(b), metric δgμν , pressure δP and energy density δε as

δT μν = (δP + δε) U
μ
(b)U

ν
(b) + (P + ε)

[
U

μ
(b) δU

ν
(b) + Uν

(b) δU
μ
(b)

]
+ δP gμν + P δgμν. (88)

In equation (87) Rμν and R are the Ricci tensor and scalar curvature,
respectively, and G is the gravitation constant.

(iii) ‘Superfluid’ equation that can be derived from equations (10)
and (13) of Section 2 (here we present only the spatial components
j of this equation)6

i ω (μn Ynk w(k)j − nb w(n)j ) = ne ∂j (eν/2 δμ). (89)

Expressing the vectors w
j
(i) through Xj in this equation (see equations

3 and 4), and introducing the redshifted imbalance of chemical
potentials δμ∞ ≡ eν/2 δμ, one can rewrite equation (89) as

Xj = i ne

μnnb ω y
∂j (δμ∞), (90)

where y is defined by equation (68). Note that this equation dictates
the most general form of the superfluid Lagrangian displacement
ξ

j
(sfl) that was already obtained in equation (52) from the symmetry

arguments.

Equations (83)–(90) should be supplemented with the expres-
sions for the perturbations δP, δμ and δε. To derive them, let us
note that any thermodynamic quantity (e.g. P) in the superfluid mat-
ter can be presented as a function of nb, ne, T and w(i) μw

μ
(k) (see e.g.

Gusakov 2007). In strongly degenerate matter the dependence of P,
δμ and ε on T can be neglected (see e.g. Reisenegger 1995; Gusakov
et al. 2005), while the scalars w(i) μw

μ
(k) are quadratically small in a

slightly perturbed star (see Section 3.2). Thus, P = P(nb, ne), δμ =
δμ(nb, ne) and ε = ε(nb, ne). Expanding these functions into Taylor
series near the equilibrium, one obtains

δP = nb
∂P

∂nb

[
δnb

nb
+ s̃

δne (norm)

ne
+ s

δne (sfl)

ne

]
, (91)

δμ = ne
∂δμ

∂ne

[
z

δnb

nb
+ δne (norm)

ne
+ δne (sfl)

ne

]
, (92)

δε = μn δnb, (93)

where we made use of equation (84), and introduced dimensionless
coupling parameter s and the quantities s̃ and z,

s ≡ ne

nb

(∂P/∂ne)

(∂P/∂nb)
, (94)

6 It is worth to make a number of comments on equation (89): (i) in Gusakov
& Kantor (2011) this equation was derived under the assumption that the
only superfluid species are neutrons (i.e. Ypi = 0). A generalization of
this equation to the case of possible proton superfluidity is presented in
(Chugunov & Gusakov 2011, see their equation 3). (ii) In both papers
(Chugunov & Gusakov 2011; Gusakov & Kantor 2011), this equation is
written with the same mistake. In particular, in Chugunov & Gusakov (2011)
one should write ne ∂j (eν/2 δμ) instead of ne eν/2 ∂j (δμ) in the right-hand
side of equation (3).
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s̃ ≡ ne

nb

(∂P/∂ne)

(∂P/∂nb)
, (95)

z ≡ nb

ne

(∂δμ/∂nb)

(∂δμ/∂ne)
. (96)

Note that the variable s̃ is equal to s here. The reason for discrim-
inating between s̃ and s is purely technical: to solve oscillation
equations (see Sections 6 and 7) it turns out to be convenient to
develop a perturbation theory in (small) parameter s, at the same
time treating the terms depending on s̃ in a non-perturbative way
(see Section 6.2 and, in particular, footnote9 there).

When deriving equation (93) we took into account that
[∂ε(nb, ne)/∂ne] δne = −δμ δne is a quadratically small quantity,
because δμ = 0 in equilibrium.7

The vector superfluid equation (90) can be substantially simpli-
fied, and reduced to a scalar one. For that let us note that, without
any loss of generality, the scalar δμ∞ can be presented as

δμ∞ = δμl(r) Y 0
l (θ ). (97)

Employing now equations (90) and (92), one arrives at

δμ′′
l +

(
h′

h
− λ′

2
+ 2

r

)
δμ′

l − eλ

[
l(l + 1)

r2
+ e−ν/2 ω2

h B

]
δμl

= −ω2 eλ−ν/2

hB
δμnorm l . (98)

Here, h = eν/2 n2
e/(μn nb y), B ≡ ∂δμ(nb, ne)/∂ne and prime (′)

means derivative with respect to the radial coordinate r. Further-
more, δμnorm l(r) in equation (98) is defined by

δμ∞
norm = δμnorm l(r) Y 0

l (θ ), (99)

where

δμ∞
norm ≡ eν/2 ne B

[
z

δnb

nb
+ δne (norm)

ne

]
(100)

is a part of δμ∞, which depends on δgμν and U
μ
(b) and is independent

of the superfluid degrees of freedom Xj (see equations 83 and 85).
The function δμnorm l(r) can be easily rewritten in terms of H0(r),
H1(r), H2(r), K(r), Wb(r) and Vb(r) with the help of equations (37),
(43), (44), (47), (51), (83) and (85). One obtains

δμnorm l = eν/2 nb
∂δμ(nb, xe)

∂nb
rl β1, (101)

where xe ≡ ne/nb and β1(r) is given by equation (79) with Wb and
Vb instead of, respectively, W and V.

Finally, let us mention one important property that follows from
the oscillation equations and quasi-neutrality condition (3). If neu-
trons in a non-rotating non-magnetized star are normal (i.e. Ynn =
Ynp = 0), while protons are superfluid (Ypp �= 0), then oscillation
eigenfrequencies and eigenfunctions for such star will be indistin-
guishable from that for a normal star of the same mass (where both
protons and neutrons are non-superfluid).

6 O U R A P P ROAC H

6.1 Decoupling of superfluid and normal modes

In principle, equations (83)–(101) allow one to study the non-radial
oscillations of superfluid NSs and thus to determine the spectrum

7 The equality ∂ε(nb, ne)/∂ne = −δμ follows from the second law of
thermodynamics (15), which can be rewritten in our case as dε = μn dnb −
δμ dne.

of eigenfrequencies ω, eigenfunctions H0, H1,. . . , Wsfl and Vsfl, and
hence the damping times τ grav, τ bulk and τ shear. However, this task
can be significantly simplified, if one notes that the dimensionless
coupling parameter s (94) is small for realistic equations of state
of superdense matter (Gusakov & Kantor 2011). For example, for
the equation of state APR (Akmal, Pandharipande & Ravenhall
1998) employed below s ∼ 0.01−0.05. This means that one can
look for the solution to the system of equations (83)–(101) in the
form of a series in s. Since s is small, the approximation s = 0 is
already quite accurate. Indeed, as it was shown in Gusakov & Kantor
(2011) with the example of radial oscillations, the eigenfrequencies
calculated in this approximation differ from the exact ones, on
average, by ∼ 1.5−2 per cent. Thus, in what follows all calculations
are performed assuming s = 0.

How this approach simplifies the problem? As it was first demon-
strated in Gusakov & Kantor (2011), in the s = 0 approximation su-
perfluid degrees of freedom (vectors Xj) completely decouple from
the ‘normal’ degrees of freedom [metric perturbations δgμν and
baryon four-velocities δU

μ
(b)]. That is, one has two distinct classes of

oscillations: ‘superfluid’ and ‘normal’ modes, which are described
by independent equations. For superfluid-type oscillations the met-
ric and baryon velocity are not perturbed [δgμν = 0 and δU

μ
(b) = 0];

hence these modes do not emit gravitational waves; moreover, they
are entirely localized in the SFL-region. At the same time, the
frequencies of normal modes are indistinguishable from those of a
normal (non-superfluid) star of the same mass.8 Below we discuss in
more detail decoupling of superfluid and normal oscillation modes
and how this property can be used to calculate the characteristic
damping times.

6.2 A strategy to calculate the damping times

So, let us formally assume that s = 0 (while s̃ is given by equation
95 and is non-zero). Then, as follows from equation (91), δP equals

δP = nb
∂P

∂nb

[
δnb

nb
+ s̃

δne (norm)

ne

]
(102)

and is independent of the superfluid degrees of freedom Xμ (see
equations 83 and 85). Other terms in expression (88) for δTμν also
do not depend on Xμ (in particular, δε = μnδnb does not depend on
Xμ due to equations 83 and 93). Thus, we come to conclusion that the
linearized Einstein equations (87) depend only on perturbations of
the metric gμν and the baryon four-velocity U

μ
(b) and are independent

of Xμ. Moreover, it is easy to see that in the case of s = 0 these
equations (and the corresponding boundary conditions) have exactly
the same form as in the absence of superfluidity.9 Correspondingly,

8 Here and below by ‘normal modes’ we mean oscillation modes (of ap-
proximate solution) that also exist in the normal (non-superfluid) star.
9 This is the main advantage of treating s̃ in a non-perturbative way. Note,

however, that this trick leads to somewhat ‘excessive’ accuracy of the ap-
proximate solution to oscillation equations: the retained terms depending
on s̃ may lead to smaller correction to the solution than the s-dependent
terms which were ignored. Bearing this in mind and with the aim to sim-
plify consideration, in Gusakov & Kantor (2011) it was assumed that both
parameters s and s̃ vanish in the s = 0 approximation. Such an approach
is also possible. In that case, strictly speaking, the resulting Einstein equa-
tions would differ slightly from the equations describing oscillations of a
non-superfluid NSs. In particular, instead of the standard adiabatic index
of the ‘frozen’ npe-matter γfr = (nb/P )[∂P (nb, xe)/∂nb], the new index
would appear, γ = (nb/P )[∂P (nb, ne)/∂nb]. However, this difference is
not essential, because s and s̃ are small.
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two alternatives are possible when solving the system of equations
(83)–(101) in the approximation s = 0.

(1) A star oscillates at a frequency which is not an eigenfrequency
of the Einstein equations (87). In that case, to satisfy equation (87),
one has to demand

H0 = H1 = H2 = K = Wb = Vb = 0. (103)

From equation (101) it follows then that δμnorm l = 0 and the su-
perfluid equation (98) decouples from the Einstein equations. As a
result we arrive at the ‘source-free’ equation (with the right-hand
side vanished), first derived in Chugunov & Gusakov (2011),10

δμ′′
l +

(
h′

h
− λ′

2
+ 2

r

)
δμ′

l

− eλ

[
l(l + 1)

r2
+ e−ν/2 ω2

h B

]
δμl = 0. (104)

This equation describes superfluid modes and should be solved in the
stellar region where neutrons are superfluid (SFL-region). It should
be supplemented with a number of boundary conditions, discussed
in Chugunov & Gusakov (2011) (similar, but more general boundary
conditions for equation 98 are presented in Appendix A). Having
solved equation (104) for δμl, it is easy to determine the functions
Wsfl and Vsfl using equations (48), (52) and (90). Using Wsfl and Vsfl,
one can find the functions W and V from equations (53), (54) and
(103),

W = −Wsfl, V = −Vsfl. (105)

This information is sufficient to calculate τ bulk and τ shear from equa-
tions (77) and (78) (as follows from equation 103, τ grav = ∞ for
superfluid modes in the s = 0 approximation).

(2) A star oscillates at a frequency which is an eigenfrequency
of Einstein equations (87). In that case, the eigenfrequency and
eigenfunctions H0, H1, H2, K, Wb and Vb are indistinguishable
from the corresponding eigenfrequency and eigenfunctions for an
oscillating non-superfluid NS (we recall that for the non-superfluid
star Wb = W, Vb = V, because Wsfl = Vsfl = 0, see equations 53
and 54). There is, however, one very important difference: for a
superfluid star the functions Wsfl and Vsfl do not vanish in the SFL-
region and are comparable there to Wb and Vb. As follows from
equations (77) and (78), the damping times τ bulk and τ shear depend
on these functions (as well as on W = Wb − Wsfl and V = Vb − Vsfl)
that is why the determination of Wsfl and Vsfl is a necessary task.

To determine these functions we make use of equation (98). Since
the oscillation frequency ω = σ + i/τ grav and the eigenfunctions
H0, H1, H2, K, Wb and Vb are already known, we can, using equation
(101), calculate δμnorm l and determine a ‘source’ in the right-hand
side of equation (98). This source plays a role of an external driving
force that makes the superfluid equation (98) ‘oscillate’ at the fre-
quency ω, which is not an eigenfrequency for this equation.11 As a
result, the function δμl(r) will be non-zero. To determine it one has
to specify the boundary conditions for equation (98); they are for-
mulated in Appendix A. Having solved equation (98) numerically

10 The corresponding equation (5) of Chugunov & Gusakov (2011) contains
a mistake that was corrected in the second version of the manuscript in arXiv
(see arXiv:1107.4242v2).
11 In this paper, in all numerical calculations we used σ instead of ω in
equation (98), because σ � 1/τ grav. Also, when calculating δμnorm l we
only employed the real parts of eigenfunctions H0, H1, H2, K, Wb and Vb

(see a note after equation 73).

and having defined δμl(r), one can calculate the functions Wsfl and
Vsfl, using equations (48), (52), (90) and (97).

Summarizing, in the approximation s = 0 the eigenfrequencies
and eigenfunctions H0, H1, H2, K, Wb and Vb (and hence τ grav) for
the normal modes appear to be the same as for a non-superfluid star.
At the same time the eigenfunctions Wsfl and Vsfl are non-zero in
the SFL-region and should be determined from equation (98). As a
result, the damping times τ bulk and τ shear, defined by equations (77)
and (78), will differ from the corresponding times, calculated using
the ordinary (non-superfluid) hydrodynamics (even if one takes into
account the effects of superfluidity on the kinetic coefficients).

7 R ESULTS

Let us apply the approach, suggested in the previous section, to
determine the frequency spectrum and damping times for an oscil-
lating superfluid NS. But first let us discuss its equilibrium model.

7.1 Microphysics input and equilibrium model

As mentioned in Section 2, we consider the simplest npe-
composition of NS core. We adopt APR equation of state (Akmal
et al. 1998) parametrized by Heiselberg & Hjorth-Jensen (1999) in
the core and the equation of state by Negele & Vautherin (1973) in
the crust.

All numerical results presented here are obtained for an NS with
the mass M = 1.4 M�. The circumferential radius for such star is
R = 12.2 km, and the central density is ρc = 9.26 × 1014 g cm−3.
The crust–core interface lies at the distance of Rcc = 10.9 km from
the centre.

When modelling the effects of superfluidity we assume the triplet
pairing of neutrons and singlet pairing of protons in the NS core.
The neutron superfluidity in the stellar crust is neglected; it should
not affect strongly the global oscillations of NSs.

We consider two models of nucleon superfluidity: model ‘1’
(simplified) and model ‘2’ (more realistic). In the model 1 the
redshifted proton critical temperature is constant over the core,
T ∞

cp ≡ Tcp eν/2 = 5 × 109 K; the redshifted neutron critical temper-
ature T ∞

cn ≡ Tcn eν/2 increases with the density ρ and reaches the
maximum value T ∞

cn max = 6 × 108 K at the stellar centre (r =0). This
model corresponds to the model 3 of Kantor & Gusakov (2011).

In the model 2 both critical temperatures Tcn and Tcp are density
dependent. This model does not contradict the results of microscopic
calculations (see e.g. Yakovlev et al. 1999; Lombardo & Schulze
2001) and is similar to the nucleon pairing models used to explain
observations of the cooling NS in Cassiopea A supernova remnant
(Shternin et al. 2011).

The models 1 and 2 are shown in Figs 1 and 2, respectively.12 The
function Tci(ρ) in both figures is shown in the left-hand panels, while
the right-hand panels demonstrate the dependence T ∞

ci (r) (i = n and
p). With the decrease of the redshifted temperature T∞ the size of
the SFL-region [given by the condition T < Tcn(r) or, equivalently,
T ∞ < T ∞

cn (r)] increases or remains unchanged. For instance, the
SFL-region corresponding to T∞ = 4 × 108 K is shaded in Figs 1
and 2. One can see that for the model 2 there can be three-layer
configurations of a star with no neutron superfluidity in the centre
and in the outer region but with superfluid intermediate region.

12 Fig. 2 is a slightly modified version of fig. 1 from Chugunov & Gusakov
(2011).
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Figure 1. Left-hand panel: nucleon critical temperatures Tck (k = n, p) versus density ρ for model 1. Right-hand panel: redshifted critical temperatures T ∞
ck

versus radial coordinate r (in units of R) for model 1.

Figure 2. The same as in Fig. 1 but for model 2.

On the contrary, in the model 1 only two-layer configurations are
possible.

The entrainment matrix Yik is calculated for the superfluidity
models 1 and 2 in a way similar to how it was done in Kantor &
Gusakov (2011).

When analysing viscous dissipation in oscillating NSs we al-
low for the damping due to shear and bulk viscosities. For the shear
viscosity coefficient η we take the electron shear viscosity ηe, calcu-
lated in Shternin & Yakovlev (2008). We neglect the nucleon shear
viscosity because (i) it is poorly known even for non-superfluid
matter and (ii) it appears to be less than the electron shear viscosity
in the core at T 
 Tcp (Shternin & Yakovlev 2008).

The bulk viscosity coefficients are calculated as described by
Gusakov (2007), Gusakov & Kantor (2008) and Kantor & Gusakov

(2011). Since the direct URCA process is closed for our stellar
model with M = 1.4 M�, the main contributor to the bulk viscosity
is the modified URCA process.

7.2 Oscillations of a non-superfluid star

As follows from Section 6.2, before considering oscillations of a
superfluid NS one should study those of a normal (non-superfluid)
star of the same mass. To this aim, we have determined the eigenfre-
quencies and eigenfunctions of the radial and non-radial oscillation
modes for a non-superfluid NS of mass M = 1.4 M� and equation
of state APR (see Section 7.1). We have solved the equations de-
scribing radial and non-radial perturbations of a non-rotating star
in general relativity. These equations are derived by expanding the
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Table 1. Frequency σ (in units of 104 s−1

and in units of σ̃ = c/R ≈ 2.46 × 104 s−1)
and the damping time τ grav (in seconds) for
various oscillation modes of a non-superfluid
NS. The first column shows the multipolarity
l of modes and their names.

l, mode σ/(104 s−1) σ/σ̃ τ grav (s)

0, F 1.703 0.691 ∞
0, 1H 4.080 1.656 ∞
0, 2H 5.732 2.327 ∞
1, p1 2.893 1.175 ∞
2, f 1.155 0.469 0.212
2, p1 3.720 1.510 3.799
3, f 1.554 0.631 18.24
3, p1 4.360 1.770 33.26

perturbed Einstein’s equations in tensorial spherical harmonics in
an appropriate gauge, and are integrated in the frequency domain.

Stellar modes are defined as solutions of the perturbed equations
which are regular at the centre and with vanishing Lagrangian pres-
sure perturbation at the surface, and (if l > 1) which behave as a pure
outgoing wave at infinity; as discussed above, such solutions have
complex frequencies ω = σ + i/τ . If l ≤ 1, instead, the frequency
is real and the mode is not associated with gravitational emission.

The oscillation modes are classified according to the source of
the restoring force which prevails in bringing the perturbed element
of fluid back to the equilibrium position; for instance, we have a
g mode if the restoring force is mainly provided by buoyancy, a p
mode if it is due to a gradient of pressure and so on.

The radial modes are calculated as described in Gusakov et al.
(2005). To calculate the non-radial modes we follow the formulation
of Lindblom & Detweiler (1983) and Detweiler & Lindblom (1985).
In their formulation, the equations for non-radial perturbations can

Figure 4. Damping times τb+s ≡ (τ−1
bulk + τ−1

shear)
−1 versus T∞ for various

oscillation modes. The effects of superfluidity are partially taken into ac-
count, as described in the text. Thick and thin solid lines correspond to radial
(l = 0) F and 1H modes, respectively; dot–dashed line corresponds to dipole
(l = 1) p1 mode; thick and thin dashes correspond to quadrupole (l = 2) f
and p1 modes, respectively; and thick and thin dots correspond to octupole
(l = 3) f and p1 modes, respectively.

be expressed, inside the star, as a system of first-order differen-
tial equations in the variables H0, H1, H2, K, Wb and Vb defined in
Section 5. Outside the star, they reduce to a simple, second-order
differential equation (the Zerilli equation). By numerical integration
of these equations (the procedure we have followed is described in
detail e.g. in Burgio et al. 2011) we find, for each value of the multi-
polarity l, the (complex) eigenfrequencies ω and the corresponding
eigenfunctions H0(r), H1(r), H2(r), K(r), Wb(r) and Vb(r). The re-
sults of our computations are summarized in Table 1 and illustrated
in Figs 3 and 4.

Figure 3. The function δμnorm l (in units of 107 K) versus r for fundamental radial F mode as well as for p1 and f modes with multipolarities l = 1, 2 and 3
(see the footnote 13). The energy of each oscillation mode is 1043 erg. Shaded region corresponds to crust, where δμnorm l is not defined and was not plotted.
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Dissipation in relativistic superfluid NSs 1529

Figure 5. Eigenfrequencies σ (in units of σ̃ ) of radial oscillations versus T ∞
8 = T ∞/(108 K) for model 1 of nucleon superfluidity. (a) Approximate spectrum.

First three normal modes (F, 1H and 2H) are shown by the solid lines; first six superfluid modes 1, . . . , 6 are shown by dashes. (b) Exact spectrum. Alternate
solid and dashed lines show the first six exact modes (I, . . . , VI) of a radially oscillating star. No spectrum was plotted in the shaded region. (c) Approximate
(dashed lines) and exact (solid lines) spectra. At T ∞ > T ∞

cn max = 6 × 108 K all neutrons are normal and the spectrum is that of a non-superfluid star.

Table 1 presents the real parts of the eigenfrequencies Re(ω) =
σ (measured in units of 104 s−1 and in units of σ̃ ≡ c/R ≈ 2.46 ×
104 s−1) and the characteristic gravitational damping times τ grav (in
seconds) for the modes with l = 0 (fundamental F mode and first two
overtones 1H and 2H), l = 1 (dipole p1 mode), l = 2 (quadrupole f
and p1 modes) and l = 3 (octupole f and p1 modes).13 One can see
that σ � 1/τ grav in all these cases. That is, damping due to emission
of gravitational waves occurs on a time-scale much longer than the
oscillation period.

Using definition (99) and equation (101) we have determined,
in terms of the eigenfunctions H0(r), H1(r),. . . ,Vb(r), the func-
tion δμnorm l(r) and, consequently, the quantity δμ∞

norm(r, θ ) =
δμnorm l(r) Y 0

l (θ ) for each mode. As follows from equations (92)
and (100), for a non-superfluid star δμ∞

norm(r, θ ) is simply a red-
shifted imbalance of chemical potentials, δμ∞ = δμ∞

norm. The func-
tion δμnorm l(r), entering equation (98), is shown in Fig. 3 for the
oscillation modes from Table 1. It is normalized such that the me-
chanical energy of oscillations is 1043 erg. The shaded region corre-
sponds to the crust of the star, where δμnorm l(r) is not defined (pro-
tons are bound in nuclei there). As seen in the figure, |δμnorm l(r)| for
f modes is about one order of magnitude smaller than for p modes.
This is not surprising, since matter is only weakly compressed dur-
ing f mode oscillations, so that a deviation from beta-equilibrium
(when δμ∞ = 0) is small. The functions δμnorm l(r) are employed
to calculate the damping times of a superfluid NS in Section 7.4.

Fig. 4 shows the viscous damping time τb+s ≡ (τ−1
bulk + τ−1

shear)
−1

as a function of T∞ for a set of oscillation modes. The solid lines
correspond to radial (l = 0) modes F and 1H, dot–dashed line cor-
responds to dipole (l = 1) mode p1, dashed lines correspond to
quadrupole (l = 2) modes f and p1, and dotted lines correspond to
octupole (l = 3) modes f and p1. To calculate τ b+s we used the for-
mulas for τ bulk and τ shear, applicable for the ordinary hydrodynamics
of a non-superfluid liquid.14 However, we allow for the effects of
superfluidity when calculating the kinetic coefficients η and ξ 2 (the
other bulk viscous coefficients do not appear in the normal-fluid
hydrodynamics). To calculate η and ξ 2 we adopt the nucleon super-
fluidity model 2 (see Section 7.1). Such an approximate approach
to accounting for the effects of superfluidity is commonly used in

13 The f mode is absent in the case of l = 1.
14 More precisely, we used equations (77) and (78) with Wsfl = Vsfl = 0.

the literature, but it is not fully consistent. The results of a more
consistent approach (see Section 6) are discussed in Section 7.4.

As follows from Fig. 4, the dependence of τ b+s on T∞ is a power
law at T ∞ � 6 × 108 K. At such T∞ the proton superfluidity is
‘strong’ (T ∞ 
 T ∞

cp ). In that case the bulk viscosity is exponentially
suppressed (Haensel, Levenfish & Yakovlev 2001), while the shear
viscosity η ∝ 1/(T∞)2 (Shternin & Yakovlev 2008) and dominates.
As a result, τ b+s ∝ (T∞)2. At high enough temperatures T ∞ �
6 × 108 K the damping due to the bulk viscosity starts to prevail;
this results in decreasing of τ b+s with growing T∞ (the curves
in Fig. 4 bend down). At such T∞ the neutrons are normal and
the proton superfluidity is weak or absent. Neglecting the proton
superfluidity, one obtains ξ 2 ∝ (T∞)6 (Haensel et al. 2001), hence
τ b+s ∝ 1/(T∞)6.

Let us note that the curves for f modes in Fig. 4 (thick dashed
line and thick dots) bend down later than others; for them the shear
viscosity is the dominant mechanism of damping up to T∞ ≈ 2.0 ×
109 K. This is not surprising, since, as it was noted above, for f
modes the deviation from beta-equilibrium is small (δμ∞ is reduced
by an order of magnitude in comparison to p modes, see Fig. 3);
hence damping due to the bulk viscosity is suppressed (the relation
between δμ∞ and τ bulk was discussed in detail e.g. in Gusakov et al.
2005). As a result, τ b+s approaches its ‘bulk viscosity’ asymptote
τ b+s ∝ 1/T6 at higher temperatures T∞ > 2.0 × 109 K.

7.3 Frequency spectrum for superfluid NSs

First of all let us consider the frequency spectrum for radial os-
cillations of a superfluid NS employing the simplified model 1 of
nucleon superfluidity. For such model this problem was discussed
in detail by Kantor & Gusakov (2011), where it was solved exactly.
Here we compare this exact solution with the approximate calcu-
lations obtained in the s = 0 approximation (see Section 6). Such
a comparison is very useful, since it allows one to make a conclu-
sion about applicability of the approximate approach in the case of
non-radial oscillations, where the exact solution is not attempted.

The eigenfrequencies σ of radial pulsations (in units of σ̃ ) ver-
sus T ∞

8 = T ∞/(108 K) are shown in Figs 5(a)–(c). In Fig. 5(a)
this dependence was obtained assuming that superfluid and nor-
mal modes are completely decoupled (s = 0 approximation). The
thick solid lines demonstrate the first three normal (non-superfluid)
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radial modes F, 1H and 2H. As one expects, their frequencies do not
depend on T∞. The dashes are for the first six superfluid modes 1,
. . . , 6, which are the solutions to equation (104). These modes, on
the contrary, strongly depend on T∞ and approach their temperature-
independent asymptotes only at T ∞ � 5 × 107 K (when the en-
tire NS core is superfluid and Yik does not depend on T∞). At
T ∞ > T ∞

cn max = 6 × 108 K all neutrons are normal so that super-
fluid modes do not exist.

Fig. 5(b) demonstrates the results of the exact solution to equa-
tions (83)–(101) obtained by Kantor & Gusakov (2011) for radial
oscillations of a superfluid NS. The frequencies σ of the first six os-
cillation modes (I,. . . ,VI) as functions of T ∞

8 are shown by alternate
solid and dashed lines. No spectrum is plotted in the grey-shaded
area. One can observe that the approximate spectrum (Fig. 5 a) is
very similar to the exact spectrum (Fig. 5 b). However, there is one
important difference: instead of crossings of superfluid and nor-
mal modes in Fig. 5(a) we have avoided crossings of the modes in
Fig. 5(b). At these points the superfluid mode turns into the normal
one and vice versa. As it was discussed in details in Gusakov &
Kantor (2011) and Kantor & Gusakov (2011), this is not surprising,
since in a vicinity of avoided crossings the Einstein equations (87)
and superfluid equation (98) interact resonantly, so that approxima-
tion of completely decoupled superfluid and normal modes (s = 0)
is inapplicable.15

For comparison, in Fig. 5(c) we plot both the approximate (dashed
lines) and exact (solid lines) spectra. The agreement between both
spectra is very good: the difference is less than a few per cent.

Such a close agreement of the exact and approximate results for
radial oscillations allows us to analyse the spectrum of non-radial
oscillations using the same approximation s = 0. The results of this
analysis are shown in Fig. 6 for more realistic model 2 of nucleon
superfluidity (see Section 7.1 and Fig. 2). Superfluid modes shown
in this figure have been already studied in detail in our recent paper
(Chugunov & Gusakov 2011). Thus, here we discuss them only
briefly.

Fig. 6 contains five panels. Four upper panels present eigen-
frequencies σ as functions of T ∞

8 for normal modes from Ta-
ble 1 (thick horizontal lines) and for superfluid modes (dashes)
with multipolarities l = 0, 1, 2 and 3. For each l there is an in-
finite set of superfluid modes whose eigenfunctions δμl differ by
the number of radial nodes n; in the figure we plot the first 25
of them. The lower panel demonstrates broadening of the SFL-
region with decreasing T ∞

8 (SFL-region is shown by hatches). For
model 2 (which we employ here) the redshifted neutron critical
temperature T ∞

cn (r) has a maximum at T ∞
cn max ≈ 5.1 × 108 K (right

vertical dotted line). The neutron superfluidity reaches the stellar
centre at T ∞ = T ∞

cn (0) ≈ 2 × 108 K (left vertical dotted line). At
T ∞ > T ∞

cn max all neutrons are normal, hence only normal modes ex-
ist in the star. At T ∞ < T ∞

cn (0) the core is completely occupied by
the neutron superfluidity. One can see that the behaviour of super-
fluid modes differs strongly at T ∞ > T ∞

cn (0) and at T ∞ < T ∞
cn (0).

This feature was discussed in Chugunov & Gusakov (2011) and
Kantor & Gusakov (2011), where it was demonstrated that (roughly
speaking) the frequencies σ of superfluid modes scale with Ynn and
Rsfl as σ ∼ √

Ynn/Rsfl, where Rsfl is the size of the SFL-region.
With the increasing of temperature Ynn decreases, while the size

15 Thus, it would not be correct to say that any real oscillation mode of a
superfluid star is either purely superfluid or purely normal: for some T∞ it
can show itself as a superfluid, but for other T∞ it can behave as a normal
mode (see Fig. 5b).

of the SFL-region can either decrease [at T ∞ > T ∞
cn (0)] or remain

constant [at T ∞ < T ∞
cn (0)]. As a result, there is a partial compensa-

tion of these two tendencies at T ∞ > T ∞
cn (0) (hence, the frequency

changes only weakly), while at T ∞ < T ∞
cn (0) the effect of decreas-

ing of Ynn is not compensated (hence, σ decreases with growing
T∞). At T ∞ � 5 × 107 K Yik does not depend on T∞, and, as in
the case of radial pulsations, the frequencies approach their low-
temperature asymptotes.

7.4 Damping times for superfluid NSs

As in the case of eigenfrequencies, we first consider the e-folding
times τ−1

b+s ≡ τ−1
bulk + τ−1

shear for radial (l = 0) pulsations for the sim-
plified model 1 of nucleon superfluidity (see Fig. 1).

In Figs 7(a) and (d) we present the functions σ (T∞) and τ b+s(T∞),
obtained using the approximate method of Section 6.2. The frequen-
cies and damping times are plotted for normal F mode (thick solid
line) as well as for the first four superfluid modes 1, . . . , 4 (dashed
lines).16 In the region shaded in grey the function τ b+s(T∞) for
the normal mode was not plotted (there are too many merging reso-
nances in this region). The dotted curve in Figs 7(d)–(f) labelled Fnfh

(‘nfh’ is the abbreviation for ‘normal-fluid hydrodynamics’) shows
the damping time calculated using the ordinary hydrodynamics of
non-superfluid liquid but taking into account the effects of super-
fluidity on the bulk and shear viscosities. This curve is analogous to
the thick solid curve in Fig. 4, obtained under the same conditions
but for the model 2 of nucleon superfluidity. The vertical dotted line
in Figs 7(a) and (d) indicates a temperature at which frequencies of
normal F mode and the first superfluid mode coincide.

We present a detailed analysis of Fig. 7(d) in what follows, to-
gether with description of the approximate solutions for non-radial
oscillation modes (Figs 8 and 9).

For comparison, Figs 7(b) and (e) demonstrate the results of the
exact calculation of frequencies σ (T∞) and damping times τ b+s(T∞)
for the first four (I,. . . ,IV) oscillation modes of the superfluid NS
[the modes are shown by solid (I), dashed (II), dot–dashed (III) and
dotted (IV) lines].

To see how well the approximate solution (Figs 7 a and d) agrees
with the exact one (Figs 7 b and e), both solutions are presented
in Figs 7(c) and (f). Dashes correspond to approximate solution,
and solid lines correspond to exact solution. A portion of the mode
IV in Fig. 7(f) is shown by thick dots because the corresponding
approximate solution (the mode 1H) is not plotted. One sees that
the agreement between the approximate and exact solutions is rea-
sonable everywhere (average error does not exceed 10–25 per cent)
except for the resonances (see below) and an interval of tempera-
tures T ∞ � 3 × 107 K where the mode III of exact solution deviates
from the second superfluid mode of approximate solution. To ex-
plain this deviation let us note that, as follows from Fig. 5(a), at such
T∞ the frequency of the normal mode 1H practically coincides with
that of the second superfluid mode. In that case equations (87) and
(98) interact resonantly, so that the approximation of independent
superfluid and normal modes is poor even though parameter s is
small.17

16 Note that, in Figs 7(a)–(c) we present, in logarithmic scale, parts of
the spectra, which were already plotted in linear scale in Figs 5(a)–(c),
respectively.
17 For a quantitatively correct description of the function τ b+s(T∞) in that
case it is, in principle, straightforward to develop a perturbation theory
similar to the degenerate perturbation theory of quantum mechanics (see
below the discussion of resonances in Figs 7–9).
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Figure 6. Eigenfrequencies σ versus T∞ for model 2 of nucleon superfluidity and for multipolarities l = 0, 1, 2 and 3. For each l we plot first few normal
modes (solid lines) and first 25 superfluid modes (dashed lines), whose eigenfunctions δμl differ by the number of radial nodes n. At T∞ ≤ T∞

cn(0) ≈ 2 ×
108 K (see the left vertical dotted line), neutron superfluidity occupies the stellar centre. The bottom panel demonstrates the variation of the SFL-region (shown
by hatching) with T∞. Shaded area in all panels shows the region where all neutrons are normal.

Let us now consider the non-radial oscillations. Fig. 8 presents an
approximate solution for the function τ b+s(T∞), which is obtained
for a realistic nucleon superfluidity model 2. By dashes we show
superfluid modes, and solid lines correspond to normal modes. Each

panel in the figure is plotted for one normal mode (its name and
multipolarity l are indicated) and for the first 15 superfluid modes
with the same l. By dots, as in Figs 7(d)–(f), we plot τ b+s for a corre-
sponding normal modes calculated using the ordinary normal-fluid
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Figure 7. Eigenfrequencies σ (panels a–c) and damping times τ b+s (panels d–f) of a radially oscillating NS versus T∞ for model 1 of nucleon superfluidity.
Panels (a) and (d): approximate solution (normal F mode and first four superfluid modes 1, . . . , 4 are shown by solid and dashed lines, respectively); panels
(b) and (e): exact solution (first four exact modes I, . . . , IV are shown by solid, dashed, dot–dashed and dotted lines, respectively); panels (c) and (f): both
approximate (dashed lines) and exact (solid lines) solutions. Panels (a)–(c) are the same spectra as those plotted, respectively, in Figs 5(a)–(c). Normal F mode
is not shown in the shaded region because of technical reasons (too many resonances). Dotted lines in panels (d)–(f) show damping times for F mode calculated
using ordinary normal-fluid hydrodynamics (see the text for more details). Part of the mode IV (at T∞ < 6 × 107 K) is shown by dots in the panel (f), as
described in the text.

hydrodynamics. In the shaded region superfluid modes were not
plotted because all neutrons are normal there and the star oscillates
as a non-superfluid.

In more detail damping times are demonstrated for quadrupole
(l = 2) oscillation modes in Fig. 9. In particular, the normal p1 mode
is shown there by solid lines. In the three lower panels we plot the
dependence τ b+s(T∞) in an increasingly larger scale. In the three
upper panels we plot, in the same scale, the oscillation frequencies
σ (T∞) (the corresponding spectrum was already presented in Fig. 6
in linear scale). Lower left-hand panel of Fig. 9 coincides with
Fig. 8(e).

Let us discuss the main conclusions that can be drawn from the
analysis of Figs 7(d), 8 and 9.

(1) For any normal mode the dependence τ b+s(T∞) (solid lines
in these figures) has a set of resonance features (spikes) concen-
trated (for radial and p modes) to the critical temperature T ∞

cn (0)
at which neutron superfluidity in the core centre dies out. For
model 1 T ∞

cn (0) = T ∞
cn max = 6 × 108 K (see Fig. 1), and for model

2 T ∞
cn (0) ≈ 2 × 108 K (see Fig. 2). The resonances appear when

frequency of the normal mode approaches the frequency of one of
the superfluid modes. For instance, solid line in Fig. 7(a) crosses su-
perfluid modes four times (in Figs 7 a and d, the temperature T∞ of
the first crossing is shown by the vertical dotted line and equals T∞

≈ 108 K). Correspondingly, four resonances appear in Fig. 7(d). A
similar situation can be observed in Figs 8 and 9. Near resonances
τ b+s for normal mode rapidly decreases by one to two orders of
magnitude (see item 2) and, in the resonance point, it becomes
strictly equal to τ b+s for the corresponding superfluid mode.

Such behaviour of the approximate solution τ b+s(T∞) for normal
modes in the vicinity of resonances can be easily understood. In
resonance points, in which the frequencies of superfluid and normal
modes coincide, equation (98) has a non-trivial solution even in the
absence of the source δμnorm l. For it to be satisfied with the source,
the oscillation amplitude δμ must be infinitely large. In other words,
in resonance points all the energy must be contained in superfluid
degrees of freedom (in particular, near resonances Wsfl � Wb and
Vsfl � Vb). Formally, this means that in the resonance point the
damping time τ b+s should be exactly the same as for the superfluid
mode.
Another important point that is worth noting is that, as follows from
Fig. 7(f), the approximate solution for the normal radial F mode
describes qualitatively well the exact solution near resonances (the
latter is shown by solid lines). We expect that the same is also true for
non-radial modes for which the exact solution was not attempted. At
first glance such an agreement between the approximate and exact
solutions seems surprising because the approximation s = 0 should
not work in the vicinity of resonances, where the frequencies of
superfluid and normal modes are close to each other. Nevertheless,
one verifies that this approximation is still suitable for a qualitatively
correct description of the function τ b+s(T∞) if one bears in mind that
(i) close to any resonance the exact solution is a linear superposition
of independent solutions describing (intersecting) superfluid and
normal modes and (ii) τ b+s for the superfluid mode is much less
than for the normal mode.

Items (i) and (ii) mean that, in the exact solution, the main contri-
bution to τ b+s comes from the superfluid mode (while the contribu-
tion from the normal mode is small). This leads us to conclusion that
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Figure 8. Damping times τ b+s versus T∞ for various oscillation modes for model 2 of nucleon superfluidity. On each panel we plot one normal mode (shown
by solid line; its multipolarity and name is indicated) and first 15 superfluid modes (dashed lines). Dotted lines show τ b+s(T∞) for normal modes calculated
using normal-fluid hydrodynamics (see the text for more details). In the shaded area all neutrons are normal and superfluid modes do not exist.

Figure 9. Eigenfrequencies σ (upper panels) and damping times τ b+s (lower panels) versus T∞ for quadrupole (l = 2) oscillation modes in an increasingly
larger scale. The normal p1 mode is shown by solid lines. Lower left-hand panel coincides with Fig. 8(e). Other lower panels are zoomed in versions of
Fig. 8(e). Notations are the same as in Figs 6 and 8.
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the superfluid modes are the main sources of viscous dissipation in
the vicinity of resonance points. The same conclusion was already
drawn above using the approximate method of Section 6.2. This
explains why the approximate method gives qualitatively correct
results for τ b+s(T∞) near resonances.

In order to avoid confusion let us emphasize that the function
τ b+s(T∞) contains resonance features (spikes) for normal modes
only in the approximate solution (see Figs 7 d, 8 and 9). In the exact
solution any normal oscillation mode turns into a superfluid one
near resonance (and vice versa). This leads to an abrupt decreasing
(increasing) of τ b+s and formation of a ‘step-like’ structure rather
than spike (see Fig. 7 e).

(2) It was already mentioned above that, as follows from Figs
7(d), 8 and 9, normal modes (far from resonances) damp out by one
to two orders of magnitude slower than those superfluid modes with
which they can have equal frequencies (i.e. intersect in the σ−T ∞

plane).
What is the reason for such a fast damping of superfluid modes?

To be more concrete, below we consider a low-temperature case,
T ∞ � 3 × 107 K. There are three main factors: (i) for superfluid
modes eigenfunctions Wsfl and Vsfl have a maximum in the cen-
tral regions of a star where the shear viscosity is maximal. On the
contrary, for normal modes the maximum of eigenfunctions Wb

and Vb lies closer to the NS surface, where the shear viscosity co-
efficient can be substantially (five and more times) smaller. As a
consequence, Wshear for superfluid modes turns out to be greater
(and hence τ shear smaller) than for normal modes. (ii) The energy
of superfluid modes is given by equation (73) and depends on the
quantity y (see equation 68 for the definition of y). At low T∞ the
parameter y is small, y ∼ np/nn ∼ 0.04−0.09, which also results
in decreasing of the characteristic damping times for superfluid
modes.18 (iii) This factor is particularly important for radial oscil-
lations (l = 0) and is related to a coefficient α1 in expression (78)
for the damping time τ shear due to shear viscosity. This coefficient is
given by equation (81) which is a sum of four terms. It turns out that
for the normal radial modes the first term is well compensated by
the third term H2, while the other terms vanish. For the superfluid
modes such compensation does not occur because for them H2 = 0.

(3) At low enough T∞ the damping times for normal radial and
p modes can be several times larger or smaller than τ b+s, calcu-
lated employing ordinary hydrodynamics of non-superfluid liquid
but accounting for the effects of superfluidity on the bulk and shear
viscosity coefficients (dotted lines in Figs 7 d, 8 a, d, e and f,
and 9). Let us inspect, for example, Fig. 8(a). One sees that at
T ∞ � 108 K, τ b+s, calculated in the frame of non-superfluid hydro-
dynamics, is approximately four times larger than τ b+s determined
self-consistently. This difference arises because to plot the dotted
curve we used the formulas of Section 4 in which Wsfl = Vsfl = 0.
As T∞ grows, however, the difference in two ways of calculating
τ b+s rapidly decreases because the SFL-region becomes smaller and
hence its contribution to τ b+s becomes less and less pronounced.

(4) Unlike the radial and p modes, the agreement between dotted
and solid lines for normal f modes is very good (see Figs 8 b and
c), which means that for these modes use of the non-superfluid hy-
drodynamics (far from resonances) is well justified. The reason for
such a good agreement of damping times is related to a relatively
weak compression–decompression of matter in the course of the
f-type oscillations. As a consequence, for the normal f modes the

18 To get an estimate for y we made use of the sum rule μnYnn + μpYnp =
nn valid at T∞ = 0 (Gusakov, Kantor & Haensel 2009a), and neglected the
small matrix element Ynp in comparison with Ynn.

source δμnorm l in equation (98) is small, so that far from the reso-
nances δμ ≈ 0 and the superfluid degrees of freedom are almost not
excited (Wsfl ≈ Vsfl ≈ 0, see equations 48, 52 and 90). This result
confirms, extends and, we think, provides a deeper understanding
of the results previously obtained in a Newtonian framework by e.g.
Lindblom & Mendell (1994) and Andersson et al. (2009).

(5) At T ∞ → T ∞
cn max = 6 × 108 K, one can observe the rapid

increasing of τ b+s for superfluid modes in Fig. 7. It is bounded from
above by τ bulk and is related with the tendency of τ shear to grow to
infinity in this limit. Such a behaviour of τ shear was discussed in
detail in Kantor & Gusakov (2011) and is specific for model 1 of
nucleon superfluidity.

8 SU M M A RY

In this paper we, for the first time, self-consistently analyse the
effects of nucleon superfluidity on damping of oscillations of non-
rotating general relativistic NSs. Our main results are summarized
below.

(1) The analytic formulas are derived for the oscillation energy
Emech (71) and for the characteristic damping times τ bulk (77) and
τ shear (78) due to the bulk and shear viscosities. These expressions
are valid for oscillations of arbitrary multipolarity l. Expression
(71) for Emech is the generalization of formula (26) of Thorne &
Campolattaro (1967), written for a non-superfluid NS. Expressions
(77) and (78) are the generalizations, to the case of superfluidity, of
formulas (5) and (6) in Cutler et al. (1990). Note that the damping
times, calculated using the formulas of Cutler et al. (1990), appear
to be two times smaller than our τ bulk and τ shear, calculated from
equations (77) and (78) under assumption that superfluid degrees
of freedom are suppressed (i.e. Wsfl = Vsfl = 0).

(2) An approximate method is developed in detail and applied,
which allows one to easily determine the eigenfrequencies and
eigenfunctions of an oscillating superfluid NS, provided that they
are known for a normal (non-superfluid) star of the same mass (see
Section 6.2). The method is based on the approximate decoupling of
equations describing superfluid and normal oscillation modes and
exploits the ideas first formulated in Gusakov & Kantor (2011) and
Chugunov & Gusakov (2011).

(3) Using radial oscillations as an example, and adopting the
simplified model 1 of nucleon superfluidity (Fig. 1), we demonstrate
that this method leads to oscillation frequencies and characteristic
damping times that agree well with the results of exact calculation.

(4) The approximate method of Section 6.2 is applied to study
non-radial oscillations of a superfluid NS assuming the realistic
model 2 of nucleon superfluidity (Fig. 2). A number of normal and
superfluid oscillation modes with multipolarities l = 0, . . . , 3 are
considered. In particular, the following normal modes are analysed:
F mode for l = 0, p1 mode for l = 1 and f and p1 modes for l = 2
and 3.

We demonstrate the following.

(i) As a rule, for any given normal mode (whose frequency σ

coincides with the corresponding frequency of a non-superfluid NS
and does not depend on the internal redshifted stellar temperature
T∞), the viscous damping time τb+s ≡ (τ−1

bulk + τ−1
shear)

−1 is one order
of magnitude greater than τ b+s for those superfluid modes that
can intersect the normal mode in the σ−T ∞ plane. This effect is
non-local (occurs only after integration over the NS volume) and is
determined by a number of factors (see item 2 of Section 7.4).

(ii) The function τ b+s(T∞) for any normal mode contains reso-
nance features. In resonance points the frequency σ of a normal

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/428/2/1518/1006953 by U
niversita di Pisa user on 13 July 2022



Dissipation in relativistic superfluid NSs 1535

mode coincides with that of some of the superfluid modes (their σ

depends on T∞). When passing a resonance (e.g. with growing T∞),
τ b+s initially rapidly decreases (by one to two orders of magnitude)
until it reaches the value of τ b+s for this superfluid mode and, after
that, it increases again (see Figs 7 d, 8 and 9).

(iii) Resonance features (spikes) appear only in the approximate
treatment of Section 6, in which the normal and superfluid modes
intersect at resonance points (see e.g. Fig. 5 a). In the exact solution
instead of crossings one has avoided crossings of modes (Fig. 5 b).
Near avoided crossings any real mode changes its behaviour from
normal-like to superfluid-like (and vice versa). As a result, instead
of spikes one has a very rapid step-like decreasing (increasing) of
τ b+s (cf. Figs 7d and e).

(iv) Sufficiently far from the resonances τ b+s for normal radial
and p modes, determined self-consistently employing the hydro-
dynamics of a superfluid liquid, can differ several fold from τ b+s,
calculated using the ordinary normal-fluid hydrodynamics (but ac-
counting for the effects of superfluidity on the shear and bulk vis-
cosities). The latter approximation is often adopted in the literature
devoted to oscillations of NSs.

(v) In contrast to radial and p modes, for f modes far from the res-
onances, use of the ordinary hydrodynamics of non-superfluid liquid
for calculation of τ b+s is well justified. The reason is that for f-type
oscillations the imbalance δμ of chemical potentials is relatively
small (matter does not compress significantly during oscillations).
Thus, superfluid degrees of freedom are almost not excited (see
Sections 6.2 and 7.4).

(vi) Since for f modes far from the resonances δμ is small (i.e.
deviation from the beta-equilibrium is weak), bulk viscous damping
of f modes is suppressed in comparison to p modes.

Though here we only considered oscillations of superfluid non-
rotating NSs, we expect that the main conclusions of this work will
also remain (mostly) unchanged for rotating NSs. Our results indi-
cate that dissipative evolution of oscillating NSs may follow quite
different scenarios than those usually considered in the literature.
This is especially true if one is interested in the combined analysis
of damping of oscillations and thermal evolution of an NS or in
the analysis of instability windows, which are the values of T∞ and
rotation frequency at which a star becomes unstable with respect
to the emission of gravitational waves (e.g. the r mode instabil-
ity; see Andersson 1998; Friedman & Morsink 1998). These issues
are extremely interesting and important, but we left them beyond
the scope of this paper and will address the related topics in our
subsequent publication.

AC K N OW L E D G M E N T S

This study was supported by the Dynasty Foundation, Ministry
of Education and Science of Russian Federation (contract No.
11.G34.31.0001 with SPbSPU and leading scientist G. G. Pavlov,
and agreement No. 8409, 2012), RFBR (11-02-00253-a, 12-02-
31270-mol-a), FASI (grant NSh-4035.2012.2), RF president pro-
gramme (grant MK-857.2012.2), by the RAS presidium programme
‘Support for young scientists’, and by CompStar, a Research Net-
working Programme of the European Science Foundation.

R E F E R E N C E S

Abbott B. et al., 2007, Phys. Rev. D, 76, 062003
Akmal A., Pandharipande V. R., Ravenhall D. G., 1998, Phys. Rev. C, 58,

1804

Andersson N., 1998, ApJ, 502, 708
Andersson N., 2003, Classical Quantum Gravity, 20, R105
Andersson N., Kokkotas K. D., 2001, Int. J. Mod. Phys. D, 10, 381
Andersson N., Comer G. L., Langlois D., 2002, Phys. Rev. D, 66, 104002
Andersson N., Glampedakis K., Haskell B., 2009, Phys. Rev. D, 79, 103009
Andersson N., Ferrari V., Jones D. I., Kokkotas K. D., Krishnan B., Read J.

S., Rezzolla L., Zink B., 2011, Gen. Relativ. Gravitation, 43, 409
Andreev A. F., Bashkin E. P., 1975, Zh. Eksp. Teor. Fiz., 69, 319
Burgio G. F., Ferrari V., Gualtieri L., Schulze H.-J., 2011, Phys. Rev. D, 84,

044017
Carter B., Khalatnikov I. M., 1992, Phys. Rev. D, 45, 4536
Chamel N., Haensel P., 2008, Living. Rev. Relativ., 11, 10
Chandrasekhar S., 1964, ApJ, 140, 417
Chandrasekhar S., Ferrari V., 1991, Proc. R. Soc. Lond. A, 432, 247
Chugunov A. I., Gusakov M. E., 2011, MNRAS, 418, L54
Chugunov A. I., Yakovlev D. G., 2005, Astron. Rep., 49, 724
Comer G. L., Langlois D., Lin L. M., 1999, Phys. Rev. D, 60, 104025
Cutler C., Lindblom L., 1987, ApJ, 314, 234
Cutler C., Lindblom L., Splinter R. J., 1990, ApJ, 363, 603
Detweiler S. L., Ipser J. R., 1973, ApJ, 185, 685
Detweiler S., Lindblom L., 1985, ApJ, 292, 12
Epstein R. I., 1988, ApJ, 333, 880
Friedman J. L., Morsink S. M., 1998, ApJ, 502, 714
Gusakov M. E., 2007, Phys. Rev. D, 76, 083001
Gusakov M. E., Andersson N., 2006, MNRAS, 372, 1776
Gusakov M. E., Kantor E. M., 2008, Phys. Rev. D, 78, 083006
Gusakov M. E., Kantor E. M., 2011, Phys. Rev. D, 83, 081304
Gusakov M. E., Kaminker A. D., Yakovlev D. G., Gnedin O. Y., 2004, A&A,

423, 1063
Gusakov M. E., Yakovlev D. G., Gnedin O. Y., 2005, MNRAS, 361, 1415
Gusakov M. E., Kantor E. M., Haensel P., 2009a, Phys. Rev. C, 79, 055806
Gusakov M. E., Kantor E. M., Haensel P., 2009b, Phys. Rev. C, 80, 015803
Haensel P., Levenfish K. P., Yakovlev D. G., 2001, A&A, 372, 130
Haskell B., Andersson N., 2010, MNRAS, 408, 1897
Haskell B., Andersson N., Passamonti A., 2009, MNRAS, 397, 1464
Heinke C. O., Ho W. C. G., 2010, ApJ, 719, L167
Heiselberg H., Hjorth-Jensen M., 1999, ApJ, 525, L45
Ipser J. R., Thorne K. S., 1973, ApJ, 181, 181
Israel G. L. et al., 2005, ApJ, 628, L53
Kantor E. M., Gusakov M. E., 2009, Phys. Rev. D, 79, 043004
Kantor E. M., Gusakov M. E., 2011, Phys. Rev. D, 83, 103008
Khalatnikov I. M., 1989, An Introduction to the Theory of Superfluidity.

Addison-Wesley, New York
Khalatnikov I. M., Lebedev V. V., 1982, Phys. Lett. A, 91, 70
Kokkotas K. D., Schmidt B., 1999, Living Rev. Relativ., 2, 2
Kokkotas K. D., Schutz B. F., 1992, MNRAS, 255, 119
Landau L. D., Lifshitz E. M., 1987, Fluid Mechanics. Course of Theoretical

physics. Pergamon Press, Oxford
Lee U., 1995, A&A, 303, 515
Lee U., Yoshida S., 2003, ApJ, 586, 403
Lindblom L., Detweiler S. L., 1983, ApJS, 53, 73
Lindblom L., Mendell G., 1994, ApJ, 421, 689
Lindblom L., Mendell G., 1995, ApJ, 444, 804
Lindblom L., Mendell G., 2000, Phys. Rev. D, 61, 104003
Lin L.-M., Andersson N., Comer G. L., 2008, Phys. Rev. D, 78, 083008
Lombardo U., Schulze H.-J., 2001, in Blaschke D., Glendenning N. K.,

Sedrakian A., eds, Lecture Notes in Phys. Vol. 578. Physics of Neutron
Star Interiors. Springer, Berlin, p. 30

Meltzer D. W., Thorne K. S., 1966, ApJ, 145, 514
Mendell G., 1991a, ApJ, 380, 515
Mendell G., 1991b, ApJ, 380, 530
Negele J. W., Vautherin D., 1973, Nucl. Phys. A, 207, 298
Owen B., 2010, Phys. Rev. D, 82, 104002
Page D., Lattimer J. M., Prakash M., Steiner A. W., 2004, ApJS, 155, 623
Page D., Prakash M., Lattimer J. M., Steiner A. W., 2011, Phys. Rev. Lett.,

106, 081101
Passamonti A., Andersson N., 2011, MNRAS, 413, 47
Passamonti A., Andersson N., 2012, MNRAS, 419, 638

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/428/2/1518/1006953 by U
niversita di Pisa user on 13 July 2022



1536 M. E. Gusakov et al.

Passamonti A., Glampedakis K., 2012, MNRAS, 422, 3327
Prix R., Rieutord M., 2002, A&A, 393, 949
Prix R., Comer G. L., Andersson N., 2004, MNRAS, 348, 625
Putterman S. J., 1974, Superfluid Hydrodynamics. North-Holland, Amster-

dam
Regge T., Wheeler J. A., 1957, Phys. Rev., 108, 1063
Reisenegger A., 1995, ApJ, 442, 749
Samuelsson L., Andersson N., 2009, Classical Quantum Gravity, 26, 155016
Shternin P. S., Yakovlev D. G., 2008, Phys. Rev. D, 78, 063006
Shternin P. S., Yakovlev D. G., Heinke C. O., Ho W. C. G., Patnaude D. J.,

2011, MNRAS, 412, L108
Strohmayer T. E., Watts A. L., 2005, ApJ, 632, 111
Strohmayer T. E., Watts A. L., 2006, ApJ, 653, 593
Thorne K. S., Campolattaro A., 1967, ApJ, 49, 591
Watts A. L., 2011, in Bertulani C. A., Piekarewicz J., eds, to appear as a

chapter in the book ‘Neutron Star Crust’, preprint (arXiv:1111.0514)
Watts A. L., Strohmayer T. E., 2007, Adv. Space Res., 40, 1446
Wong K. S., Lin L. M., Leung P. T., 2009, ApJ, 699, 1809
Yakovlev D. G., Pethick C. J., 2004, ARA&A, 42, 169
Yakovlev D. G., Levenfish K. P., Shibanov Yu.A., 1999, Phys. Usp., 42, 737
Yoshida S., Lee U., 2003a, Phys. Rev. D, 67, 124019
Yoshida S., Lee U., 2003b, MNRAS, 344, 207

A P P E N D I X A : BO U N DA RY C O N D I T I O N S TO
E QUAT I O N ( 9 8 )

Equation (98) should be solved in the region of an NS core where
neutrons are superfluid (SFL-region). If the NS centre is occupied
by the neutron superfluidity, then for regularity of the solution at r
→ 0 it is necessary that

δμl ∝ rl . (A1)

The conditions at the boundary of the SFL-region follow from
the requirement of the absence of particle transfer (baryons and

electrons) through the interface. One obtains from definitions (4)–
(7)

XXX⊥ = 0, (A2)

where XXX⊥ is the component of the vector Xj perpendicular to the
interface. To rewrite equation (A2) in terms of δμl(r), it is necessary
to consider two possibilities.

(i) The boundary (one of the boundaries) between the SFL-region
and non-superfluid matter lies inside the core and is defined by the
condition T = Tcn(Rb) (Rb is the radial coordinate of the boundary).
Then at the boundary Ynn(Rb) = Ynp(Rb) = 0 and from equations
(90) and (98), one has

δμ′
l = eλ−ν/2 ω2

h′ B
(δμl − δμnorm l). (A3)

(ii) Outer boundary of the SFL-region coincides with the crust–
core interface (Rb = Rcc). In that case T < Tcn(Rcc) [i.e. Ynn(Rcc) and
Ynp(Rcc) are non-zero] and from equation (90) it follows that

δμ′
l(Rcc) = 0. (A4)

The conditions (A1)–(A4) are necessary and sufficient for solving
equation (98).
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