33 research outputs found
Ultra-low phase noise all-optical microwave generation setup based on commercial devices
In this paper, we present a very simple design based on commercial devices
for the all-optical generation of ultra-low phase noise microwave signals. A
commercial, fibered femtosecond laser is locked to a laser that is stabilized
to a commercial ULE Fabry-Perot cavity. The 10 GHz microwave signal extracted
from the femtosecond laser output exhibits a single sideband phase noise
at 1 Hz Fourier frequency, at
the level of the best value obtained with such "microwave photonics" laboratory
experiments \cite{Fortier2011}. Close-to-the-carrier ultra-low phase noise
microwave signals will now be available in laboratories outside the frequency
metrology field, opening up new possibilities in various domains.Comment: 8 pages, 3 figures. To be published in Applied Optics, early posting
version available at
http://www.opticsinfobase.org/ao/upcoming_pdf.cfm?id=23114
Influence of the ESR saturation on the power sensitivity of cryogenic sapphire resonators
Here, we study the paramagnetic ions behavior in presence of a strong
microwave electromagnetic field sustained inside a cryogenic sapphire
whispering gallery mode resonator. The high frequency measurement resolution
that can be now achieved by comparing two CSOs permit for the first time to
observe clearly the non-linearity of the resonator power sensitivity. These
observations that in turn allow us to optimize the CSO operation, are well
explained by the Electron Spin Resonance (ESR) saturation of the paramagnetic
impurities contained in the sapphire crystal.Comment: 8 pages, 9 figure
Generation of Ultrastable Microwaves via Optical Frequency Division
There has been increased interest in the use and manipulation of optical
fields to address challenging problems that have traditionally been approached
with microwave electronics. Some examples that benefit from the low
transmission loss, agile modulation and large bandwidths accessible with
coherent optical systems include signal distribution, arbitrary waveform
generation, and novel imaging. We extend these advantages to demonstrate a
microwave generator based on a high-Q optical resonator and a frequency comb
functioning as an optical-to-microwave divider. This provides a 10 GHz
electrical signal with fractional frequency instability <8e-16 at 1 s, a value
comparable to that produced by the best microwave oscillators, but without the
need for cryogenic temperatures. Such a low-noise source can benefit radar
systems, improve the bandwidth and resolution of communications and digital
sampling systems, and be valuable for large baseline interferometry, precision
spectroscopy and the realization of atomic time
Single-breath method for assessing the viscoelastic properties of the respiratory system.
In order to explain the time dependency of resistance and elastance of the respiratory system, a linear viscoelastic model (Maxwell body) has been proposed. In this model the maximal viscoelastic pressure (Pvisc.max) developed within the tissues of the lung and chest wall at the end of a constant-flow (V') inflation of a given time (tI) is given by: Pvisc,max = R2V'(1-e(-tI/tau2), where R2 and tau2 are, respectively, the resistance and time constant of the Maxwell body. After rapid airway occlusion at t1, tracheal pressure (Ptr) decays according to the following function: Ptr(t) = Pvisc(t) + Prs,st = Pvisc,max(etocc/tau2)+ Prs,st, where tocc/is time after occlusion and Prs,st is static re-coil pressure of the respiratory system. By fitting Ptr after occlusion to this equation, tau2 and Pvisc,max are obtained. Using these values, together with the V' and tI pertaining to the constant-flow inflation preceding the occlusion, R2 can be calculated from the former equation. Thus, from a single breath, the constants tau2, R2 and E2 (R2/tau2) can be obtained. This method was used in 10 normal anaesthetized, paralysed, mechanically ventilated subjects and six patients with acute lung injury. The results were reproducible in repeated tests and similar to those obtained from the same subjects and patients with the time-consuming isoflow, multiple-breath method described previously