1,591 research outputs found
Company pensions and taxation
This article deals with the conditions for profitability of company pensions, comparing the in fluence of immediate and deferred taxation under different rules of funding the pension contributions. The model provides a systematic general framework to investigate incentive compatibility of such pension schemes in most western countries. The implications of real world complications such as multiple interest rates and progressive income taxation are also considered. The findings suggest that although it might be helpful to discriminate company pension contracts against other forms of private old age securities for the improvement of this special contract itself, one has to evaluate carefully the impact on effciency in the overall economy
Paintig of defined chromosomal regions by in situ suppression hybridization of libraries from laser-microdissected chromosomes
Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks
Skeletal bone age assessment is a common clinical practice to diagnose
endocrine and metabolic disorders in child development. In this paper, we
describe a fully automated deep learning approach to the problem of bone age
assessment using data from Pediatric Bone Age Challenge organized by RSNA 2017.
The dataset for this competition is consisted of 12.6k radiological images of
left hand labeled by the bone age and sex of patients. Our approach utilizes
several deep learning architectures: U-Net, ResNet-50, and custom VGG-style
neural networks trained end-to-end. We use images of whole hands as well as
specific parts of a hand for both training and inference. This approach allows
us to measure importance of specific hand bones for the automated bone age
analysis. We further evaluate performance of the method in the context of
skeletal development stages. Our approach outperforms other common methods for
bone age assessment.Comment: 14 pages, 9 figure
Single-Bottleneck Approximation for Driven Lattice Gases with Disorder and Open Boundary Conditions
We investigate the effects of disorder on driven lattice gases with open
boundaries using the totally asymmetric simple exclusion process as a
paradigmatic example. Disorder is realized by randomly distributed defect sites
with reduced hopping rate. In contrast to equilibrium, even macroscopic
quantities in disordered non-equilibrium systems depend sensitively on the
defect sample. We study the current as function of the entry and exit rates and
the realization of disorder and find that it is, in leading order, determined
by the longest stretch of consecutive defect sites (single-bottleneck
approximation, SBA). Using results from extreme value statistics the SBA allows
to study ensembles with fixed defect density which gives accurate results, e.g.
for the expectation value of the current. Corrections to SBA come from
effective interactions of bottlenecks close to the longest one. Defects close
to the boundaries can be described by effective boundary rates and lead to
shifts of the phase transitions. Finally it is shown that the SBA also works
for more complex models. As an example we discuss a model with internal states
that has been proposed to describe transport of the kinesin KIF1A.Comment: submitted to J. Stat. Mec
On the segmentation and classification of hand radiographs
This research is part of a wider project to build predictive models of bone age using hand radiograph images. We examine ways of finding the outline of a hand from an X-ray as the first stage in segmenting the image into constituent bones. We assess a variety of algorithms including contouring, which has not previously been used in this context. We introduce a novel ensemble algorithm for combining outlines using two voting schemes, a likelihood ratio test and dynamic time warping (DTW). Our goal is to minimize the human intervention required, hence we investigate alternative ways of training a classifier to determine whether an outline is in fact correct or not. We evaluate outlining and classification on a set of 1370 images. We conclude that ensembling with DTW improves performance of all outlining algorithms, that the contouring algorithm used with the DTW ensemble performs the best of those assessed, and that the most effective classifier of hand outlines assessed is a random forest applied to outlines transformed into principal components
Mixed population of competing TASEPs with a shared reservoir of particles
We introduce a mean-field theoretical framework to describe multiple totally
asymmetric simple exclusion processes (TASEPs) with different lattice lengths,
entry and exit rates, competing for a finite reservoir of particles. We present
relations for the partitioning of particles between the reservoir and the
lattices: these relations allow us to show that competition for particles can
have non-trivial effects on the phase behavior of individual lattices. For a
system with non-identical lattices, we find that when a subset of lattices
undergoes a phase transition from low to high density, the entire set of
lattice currents becomes independent of total particle number. We generalize
our approach to systems with a continuous distribution of lattice parameters,
for which we demonstrate that measurements of the current carried by a single
lattice type can be used to extract the entire distribution of lattice
parameters. Our approach applies to populations of TASEPs with any distribution
of lattice parameters, and could easily be extended beyond the mean-field case.Comment: 12 pages, 8 figure
Recommended from our members
SNP panel identification assay (SPIA): a genetic-based assay for the identification of cell lines
Translational research hinges on the ability to make observations in model systems and to implement those findings into clinical applications, such as the development of diagnostic tools or targeted therapeutics. Tumor cell lines are commonly used to model carcinogenesis. The same tumor cell line can be simultaneously studied in multiple research laboratories throughout the world, theoretically generating results that are directly comparable. One important assumption in this paradigm is that researchers are working with the same cells. However, recent work using high throughput genomic analyses questions the accuracy of this assumption. Observations by our group and others suggest that experiments reported in the scientific literature may contain pre-analytic errors due to inaccurate identities of the cell lines employed. To address this problem, we developed a simple approach that enables an accurate determination of cell line identity by genotyping 34 single nucleotide polymorphisms (SNPs). Here, we describe the empirical development of a SNP panel identification assay (SPIA) compatible with routine use in the laboratory setting to ensure the identity of tumor cell lines and human tumor samples throughout the course of long term research use
Comparison of two devices and two breathing patterns for exhaled breath condensate sampling.
Analysis of exhaled breath condensate (EBC) is a noninvasive method to access the epithelial lining fluid of the lungs. Due to standardization problems the method has not entered clinical practice. The aim of the study was to assess the comparability for two commercially available devices in healthy controls. In addition, we assessed different breathing patterns in healthy controls with protein markers to analyze the source of the EBC.
EBC was collected from ten subjects using the RTube and ECoScreen Turbo in a randomized crossover design, twice with every device--once in tidal breathing and once in hyperventilation. EBC conductivity, pH, surfactant protein A, Clara cell secretory protein and total protein were assessed. Bland-Altman plots were constructed to display the influence of different devices or breathing patterns and the intra-class correlation coefficient (ICC) was calculated. The volatile organic compound profile was measured using the electronic nose Cyranose 320. For the analysis of these data, the linear discriminant analysis, the Mahalanobis distances and the cross-validation values (CVV) were calculated.
Neither the device nor the breathing pattern significantly altered EBC pH or conductivity. ICCs ranged from 0.61 to 0.92 demonstrating moderate to very good agreement. Protein measurements were greatly influenced by breathing pattern, the device used, and the way in which the results were reported. The electronic nose could distinguish between different breathing patterns and devices, resulting in Mahalanobis distances greater than 2 and CVVs ranging from 64% to 87%.
EBC pH and (to a lesser extent) EBC conductivity are stable parameters that are not influenced by either the device or the breathing patterns. Protein measurements remain uncertain due to problems of standardization. We conclude that the influence of the breathing maneuver translates into the necessity to keep the volume of ventilated air constant in further studies
Suitability versus fidelity for rating single-photon guns
The creation of specified quantum states is important for most, if not all,
applications in quantum computation and communication. The quality of the state
preparation is therefore an essential ingredient in any assessment of a
quantum-state gun. We show that the fidelity, under the standard definitions is
not sufficient to assess quantum sources, and we propose a new measure of
suitability that necessarily depends on the application for the source. We
consider the performance of single-photon guns in the context of quantum key
distribution (QKD) and linear optical quantum computation. Single-photon
sources for QKD need radically different properties than sources for quantum
computing. Furthermore, the suitability for single-photon guns is discussed
explicitly in terms of experimentally accessible criteria.Comment: 4 pages, 2 figures Revised per referee suggestion
2015 Update on Acute Adverse Reactions to Gadolinium based Contrast Agents in Cardiovascular MR. Large Multi-National and Multi-Ethnical Population Experience With 37788 Patients From the EuroCMR Registry
Objectives: Specifically we aim to demonstrate that the results of our earlier safety data hold true in this much larger multi-national and multi-ethnical population. Background: We sought to re-evaluate the frequency, manifestations, and severity of acute adverse reactions associated with administration of several gadolinium- based contrast agents during routine CMR on a European level. Methods: Multi-centre, multi-national, and multi-ethnical registry with consecutive enrolment of patients in 57 European centres. Results: During the current observation 37788 doses of Gadolinium based contrast agent were administered to 37788 patients. The mean dose was 24.7 ml (range 5–80 ml), which is equivalent to 0.123 mmol/kg (range 0.01 - 0.3 mmol/kg). Forty-five acute adverse reactions due to contrast administration occurred (0.12 %). Most reactions were classified as mild (43 of 45) according to the American College of Radiology definition. The most frequent complaints following contrast administration were rashes and hives (15 of 45), followed by nausea (10 of 45) and flushes (10 of 45). The event rate ranged from 0.05 % (linear non-ionic agent gadodiamide) to 0.42 % (linear ionic agent gadobenate dimeglumine). Interestingly, we also found different event rates between the three main indications for CMR ranging from 0.05 % (risk stratification in suspected CAD) to 0.22 % (viability in known CAD). Conclusions: The current data indicate that the results of the earlier safety data hold true in this much larger multi-national and multi-ethnical population. Thus, the “off-label” use of Gadolinium based contrast in cardiovascular MR should be regarded as safe concerning the frequency, manifestation and severity of acute events
- …
