2,499 research outputs found

    Evaporative CO2 cooling using microchannels etched in silicon for the future LHCb vertex detector

    Full text link
    The extreme radiation dose received by vertex detectors at the Large Hadron Collider dictates stringent requirements on their cooling systems. To be robust against radiation damage, sensors should be maintained below -20 degree C and at the same time, the considerable heat load generated in the readout chips and the sensors must be removed. Evaporative CO2 cooling using microchannels etched in a silicon plane in thermal contact with the readout chips is an attractive option. In this paper, we present the first results of microchannel prototypes with circulating, two-phase CO2 and compare them to simulations. We also discuss a practical design of upgraded VELO detector for the LHCb experiment employing this approach.Comment: 12 page

    XMM-Newton reveals ~100 new LMXBs in M31 from variability studies

    Full text link
    We have conducted a survey of X-ray sources in XMM-Newton observations of M31, examining their power density spectra (PDS) and spectral energy distributions (SEDs). Our automated source detection yielded 535 good X-ray sources; to date, we have studied 225 of them. In particular, we examined the PDS because low mass X-ray binaries (LMXBs) exhibit two distinctive types of PDS. At low accretion rates, the PDS is characterised by a broken power law, with the spectral index changing from ~0 to ~1 at some frequency in the range \~0.01--1 Hz; we refer to such PDS as Type A. At higher accretion rates, the PDS is described by a simple power law; we call these PDS Type B. Of the 225 sources studied to date, 75 exhibit Type A variability, and are almost certainly LMXBs, while 6 show Type B but not Type A, and are likely LMXBs. Of these 81 candidate LMXBs, 71 are newly identified in this survey; furthermore, they are mostly found near the centre of M31. Furthermore, most of the X-ray population in the disc are associated with the spiral arms, making them likely high mass X-ray binaries (HMXBs). In general these HMXBs do not exhibit Type A variability, while many central X-ray sources (LMXBs) in the same luminosity range do. Hence the PDS may distinguish between LMXBs and HMXBs in this luminosity range.Comment: 4 pages, 2 figures. To appear in proceedings of IAUS230: "Populations of High Energy Sources in Galaxies", 14-19 August 2005, Dublin, Eds E.J.A. Meurs and G. Fabbian

    Shoulder posture and median nerve sliding

    Get PDF
    Background: Patients with upper limb pain often have a slumped sitting position and poorshoulder posture. Pain could be due to poor posture causing mechanical changes (stretch; localpressure) that in turn affect the function of major limb nerves (e.g. median nerve). This studyexamines (1) whether the individual components of slumped sitting (forward head position, trunkflexion and shoulder protraction) cause median nerve stretch and (2) whether shoulderprotraction restricts normal nerve movements.Methods: Longitudinal nerve movement was measured using frame-by-frame cross-correlationanalysis from high frequency ultrasound images during individual components of slumped sitting.The effects of protraction on nerve movement through the shoulder region were investigated byexamining nerve movement in the arm in response to contralateral neck side flexion.Results: Neither moving the head forward or trunk flexion caused significant movement of themedian nerve. In contrast, 4.3 mm of movement, adding 0.7% strain, occurred in the forearm duringshoulder protraction. A delay in movement at the start of protraction and straightening of thenerve trunk provided evidence of unloading with the shoulder flexed and elbow extended and thescapulothoracic joint in neutral. There was a 60% reduction in nerve movement in the arm duringcontralateral neck side flexion when the shoulder was protracted compared to scapulothoracicneutral.Conclusion: Slumped sitting is unlikely to increase nerve strain sufficient to cause changes tonerve function. However, shoulder protraction may place the median nerve at risk of injury, sincenerve movement is reduced through the shoulder region when the shoulder is protracted andother joints are moved. Both altered nerve dynamics in response to moving other joints and localchanges to blood supply may adversely affect nerve function and increase the risk of developingupper quadrant pain

    A cost and CO2 comparison of using trains and higher capacity trucks when UK FMCG companies collaborate

    Get PDF
    Companies working in a collaboration are able to achieve higher vehicle capacity utilisation and reduced empty running, resulting in lower costs and improved sustainability through reduced emissions and congestion. Collaboration produces higher volumes of goods to be moved than individual companies which means that further efficiencies may be possible by relaxing the freight mode constraints and considering rail and higher capacity vehicles. This paper explains how real world data has been used in a model to quantify the economic and environmental benefits in the FMCG sector delivered through collaboration utilising road and rail freight modes. Data for one month was provided by 10 FMCG companies and included freight transport flows between depots and customers, inter depot movements, and supplier collections. Detailed road and rail costs and operating characteristics were obtained and, with the transport flows, applied to a network design model which was used to validate the company data sets. A strategy examining the potential use of alternative higher capacity vehicles and rail for the flows between nine regional consolidation centres showed cost and CO2 savings. Just under half the inter-regional flows benefited from double deck trailers, longer heavier vehicles for 30% of the flows and rail with different wagon configurations for the rest. In summary there was a 23% reduction in cost with 58% fewer road kilometres and a 46% reduction in CO2 emissions. The ability to backhaul the same mode of transport between most of the regional centres was one of the strengths of this strategy

    The neural correlates of regulating positive and negative emotions in medication-free major depression

    Get PDF
    Depressive cognitive schemas play an important role in the emergence and persistence of major depressive disorder (MDD). The current study adapted emotion regulation techniques to reflect elements of cognitive behavioural therapy (CBT) and related psychotherapies to delineate neurocognitive abnormalities associated with modulating the negative cognitive style in MDD. Nineteen non-medicated patients with MDD and 19 matched controls reduced negative or enhanced positive feelings elicited by emotional scenes while undergoing functional magnetic resonance imaging. Although both groups showed significant emotion regulation success as measured by subjective ratings of affect, the controls were significantly better at modulating both negative and positive emotion. Both groups recruited regions of dorsolateral prefrontal cortex and ventrolateral prefrontal cortex (VLPFC) when regulating negative emotions. Only in controls was this accompanied by reduced activity in sensory cortices and amygdala. Similarly, both groups showed enhanced activity in VLPFC and ventral striatum when enhancing positive affect; however, only in controls was ventral striatum activity correlated with regulation efficacy. The results suggest that depression is associated with both a reduced capacity to achieve relief from negative affect despite recruitment of ventral and dorsal prefrontal cortical regions implicated in emotion regulation, coupled with a disconnect between activity in reward-related regions and subjective positive affect

    BIM enabled optimisation framework for environmentally responsible and structurally efficient design systems

    Get PDF
    The present research investigates the potential for reducing the environmental impacts of structural systems through a more efficient use of materials. The main objective of this research is to explore and to develop a holistic and integrated methodology that utilises Building Information Modelling's (BIM) capabilities combined with structural analysis and Life Cycle Assessment (LCA) as well as a two-staged structural optimisation solver that achieves efficient and environmentally responsible steel design solutions. The implemented workflow utilises Autodesk Revit-BIM, Tally-LCA and Autodesk Robot-Structural Analysis. RobOpt is the plug-in that has been established using the Application Programming Interface (API) of Robot and the .NET framework of C?, and it inherits several structural functionalities based on Robot Finite Element Method (FEM) engine. The proposed RobOpt application can be accessed via a graphic user interface (GUI) within the Robot software. The developed BIM-enabled optimisation methodology could be utilised as a design tool to inform early stage structural design solutions. A prototypical steel framed structural system under certain loads has been explored. The resulting bespoke I-beam sections from the custom genetic algorithm (GA) optimisation demonstrate that significant savings-up to 21%-can be achieved in all tested environmental indicators when compared to the standard UK catalogue of steel sections. Considering all, the proposed framework constitutes a useful and an intuitive workflow, which aims to quantify the environmental savings of structural systems by utilising, advanced computational analysis and common construction techniques
    • 

    corecore