
Western University
Scholarship@Western

Anatomy and Cell Biology Publications Anatomy and Cell Biology Department

5-1-2014

The neural correlates of regulating positive and
negative emotions in medication-free major
depression
Steven G. Greening
Western University

Elizabeth A. Osuch
Western University

Peter C. Williamson
Western University

Derek G. V. Mitchell
Western University, dmitch8@uwo.ca

Follow this and additional works at: https://ir.lib.uwo.ca/anatomypub

Part of the Anatomy Commons, and the Cell and Developmental Biology Commons

Citation of this paper:
Greening, Steven G.; Osuch, Elizabeth A.; Williamson, Peter C.; and Mitchell, Derek G. V., "The neural correlates of regulating positive
and negative emotions in medication-free major depression" (2014). Anatomy and Cell Biology Publications. 78.
https://ir.lib.uwo.ca/anatomypub/78

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/129547247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca?utm_source=ir.lib.uwo.ca%2Fanatomypub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/anatomypub?utm_source=ir.lib.uwo.ca%2Fanatomypub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/anatomy?utm_source=ir.lib.uwo.ca%2Fanatomypub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/anatomypub?utm_source=ir.lib.uwo.ca%2Fanatomypub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/903?utm_source=ir.lib.uwo.ca%2Fanatomypub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/8?utm_source=ir.lib.uwo.ca%2Fanatomypub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/anatomypub/78?utm_source=ir.lib.uwo.ca%2Fanatomypub%2F78&utm_medium=PDF&utm_campaign=PDFCoverPages


The neural correlates of regulating positive and negative
emotions in medication-free major depression
Steven G. Greening,1,2 Elizabeth A. Osuch,3,4,5 Peter C. Williamson,3,4 and Derek G. V. Mitchell1,2,3,6
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School of Medicine and Dentistry, London, Ontario, Canada, N6A 5W9, 4Lawson Health Research Institute, St. Joseph’s Health Centre and

London Health Sciences Centre, London, Ontario, Canada, N6C 2R5, 5Department of Medical Biophysics, Schulich School of Medicine and

Dentistry, The University of Western Ontario, London, Ontario, Canada, N6A 5C1, and 6The Department of Psychology, Faculty of Social Science,

The University of Western Ontario, London, Ontario, Canada, N6A 5C2

Depressive cognitive schemas play an important role in the emergence and persistence of major depressive disorder (MDD). The current study adapted
emotion regulation techniques to reflect elements of cognitive behavioural therapy (CBT) and related psychotherapies to delineate neurocognitive
abnormalities associated with modulating the negative cognitive style in MDD. Nineteen non-medicated patients with MDD and 19 matched controls
reduced negative or enhanced positive feelings elicited by emotional scenes while undergoing functional magnetic resonance imaging. Although both
groups showed significant emotion regulation success as measured by subjective ratings of affect, the controls were significantly better at modulating
both negative and positive emotion. Both groups recruited regions of dorsolateral prefrontal cortex and ventrolateral prefrontal cortex (VLPFC) when
regulating negative emotions. Only in controls was this accompanied by reduced activity in sensory cortices and amygdala. Similarly, both groups
showed enhanced activity in VLPFC and ventral striatum when enhancing positive affect; however, only in controls was ventral striatum activity
correlated with regulation efficacy. The results suggest that depression is associated with both a reduced capacity to achieve relief from negative
affect despite recruitment of ventral and dorsal prefrontal cortical regions implicated in emotion regulation, coupled with a disconnect between activity
in reward-related regions and subjective positive affect.

Keywords: depression; emotion regulation; attention; amygdala; cognitive control; prefrontal cortex

INTRODUCTION

Major depressive disorder (MDD) is among the most prevalent, costly

and debilitating psychiatric disorders (World Health Organization,

2003). A ‘negative cognitive triad’ is thought to play a key role in

the initiation and maintenance of depressed mood, consisting of a

persistent negative idiosyncratic appraisal of the self, the future and

the world (Beck et al., 1979). It has also been argued that one of the key

abnormalities behind depressive illnesses is dysfunction in neural sys-

tems supporting adaptive emotion regulation (Davidson et al., 2002).

The goal of a number of psychotherapies therefore is to target negative

biases and to increase the efficacy of emotion regulation.

Consequently, elucidating the role of neural regions involved in resol-

ving negative biases and fostering adaptive emotional responding in

depression is vitally important for improving the efficiency, efficacy

and durability of the therapeutic response (Linden, 2006; Clark and

Beck, 2010).

The effortful regulation of emotion is thought to involve dorsolat-

eral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex

(VLPFC) and dorsomedial prefrontal cortex (DMPFC), which modu-

late, either directly or indirectly, emotion encoding in regions such as

the amygdala and ventral striatum (Ochsner et al., 2002, 2004;

Urry et al., 2006; Wager et al., 2008; Han et al., 2011). However, the

efficacy associated with emotion regulation varies depending on the

strategy adopted as indicated by neural, physiological and behavioural

markers of affect (e.g. Gross, 1998; Goldin et al., 2008; Kross et al.,

2009). For example, some strategies may even exacerbate emo-

tional dysfunction (Gross, 1998; Campbell-Sills and Barlow, 2007).

Consideration of the specific regulation strategy adopted is therefore

critical when interpreting the clinical significance of results from emo-

tion regulation studies.

Considerable research has demonstrated the importance of the

ventromedial prefrontal cortex, including the subgenual region

(Mayberg et al., 2005), in the etiology of depression (Drevets et al.,

1992; Koenigs et al., 2008). Notably, much of this evidence comes from

studies using positron emission tomography, which is often more

robust than functional magnetic resonance imaging (fMRI) to the

signal loss caused by susceptibility artefact (Devlin et al., 2000;

Veltman et al., 2000). However, it is also important to note the evi-

dence that lateral prefrontal regions involved in emotion regulation

have also been implicated in current models of MDD (Phillips et al.,

2003; Price and Drevets, 2010). Past research has demonstrated that

MDD is associated with reduced resting metabolism in DLPFC

(Mayberg, 2002) and hyper-metabolism in VLPFC (Drevets et al.,

1992). In addition, histological evidence from post-mortem studies

indicates that neuronal and glial density within the DLPFC and

VLPFC of depressed patients is reduced (Rajkowska et al., 1999,

2001). While some suggest that recovery from MDD following medi-

cation is related to enhanced activity in DLPFC (Kennedy et al., 2001;

Fales et al., 2009), others have found that successful treatment with

cognitive behavioural therapy (CBT) was associated with reduced ac-

tivity within DLPFC and VLPFC (Goldapple et al., 2004; Ritchey et al.,

2011). When healthy, these regions are thought to modulate stimulus

encoding in a manner that ultimately influences activity in

emotion-related brain regions including the amygdala and ventral stra-

tum, which have both been implicated in the pathophysiology of de-

pression (Drevets et al., 1992; Phillips et al., 2003). One way to better

understand the role of DLPFC and VLPFC in emotion regulation and
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CBT is to examine these two processes in the context of active emotion

regulation.

To date, strategies used in emotion regulation studies of depression

have differed from those adopted in typical cognitive-based therapies.

For example, patients have been asked to take the perspective of a

detached observer (Beauregard et al., 2006; Erk et al., 2010), or imagine

that the situation is fake or unreal (Johnstone et al., 2007; Heller et al.,

2009; Light et al., 2011). This is crucial because various forms of regu-

lation differentially recruit regions of the prefrontal cortex (Ochsner

et al., 2004; Goldin et al., 2008; Kross et al., 2009). Furthermore, only

one study to date (Heller et al., 2009) has examined patients’ capacity

to explicitly up-regulate positive affect. This knowledge gap is particu-

larly critical given that reduced behavioural responsiveness to positive

emotions predicts poorer prognosis (Rottenberg et al., 2002), and a

number of studies have found that amygdala reactivity to positive but

not negative cues is correlated with depression severity (Suslow et al.,

2010; Victor et al., 2010). Thus, collectively, the evidence suggests that

distinct emotion regulation strategies can have different effects at a

behavioural and physiological level, and emotional reactivity to posi-

tive stimuli predicts therapeutic response. Consequently, further re-

search using emotion regulation techniques that mirror strategies

used in cognitive therapies and target positive as well as negative

affect is essential.

Here we used functional magnetic resonance imaging (fMRI) in

conjunction with an emotion regulation task we adapted to incorpor-

ate elements of CBT and cognitive-based therapies. Patients with MDD

and matched controls attempted to reduce their emotional response to

sad stimuli and enhance their response to positive ones. We tested the

hypothesis that depression would be associated with abnormal recruit-

ment of prefrontal regions implicated in emotion regulation.

Specifically, we predicted that patients with depression would show

reduced regulation efficacy, coupled with functional abnormalities in

DLPFC and VLPFC. In addition, we predicted that this would be

accompanied by dysfunctional modulation of amygdala and ventral

striatum by negative and positive regulation trials, respectively.

METHODS

Participants

Nineteen medication-free outpatients with a primary diagnosis of

MDD were recruited for study participation from London Health

Sciences Centres and via community advertisements in London,

Ontario (Mage¼ 26.79, s.d.¼ 11.4, range¼ 16–59; 13 females, 6

males). Ten patients were anti-depressant naı̈ve at the time of scan,

and the remainder were medication-free for at least three months

(Mmonths¼ 30.8, range¼ 3–60 months). All participants were experi-

encing a major depressive episode at the time of scanning, as deter-

mined by a clinical research assistant or the primary investigator using

the Structured Clinical Interview for the Diagnostic and Statistical

Manual of Mental Disorders Fourth Edition Text Revision, DSM-IV-

TR, (SCID; First et al., 2002, both of whom underwent the required

training as per the SCID manual. Patients with a history of head injury,

neurologic illness, or depression resulting from a general medical con-

dition or substance as determined by the SCID, were excluded. Patients

with a comorbid diagnosis other than anxiety or past alcohol abuse

were also excluded. Seven participants were experiencing their first

major depressive episode at the time of the scan, while the remainder

were experiencing at least their second major depressive episode. All

patients reached diagnostic criteria for MDD, which was not attributed

to any other comorbid diagnosis. Seven patients had comorbid anxiety

disorders: two with social anxiety disorder (SAD) without agorapho-

bia, four with post-traumatic stress disorder (PTSD), one with PTSD

and SAD without agoraphobia and two had a history of alcohol abuse.

One patient had last abused alcohol a year prior to the time of scan,

and the other patient last abused one month from the time of scan.

Notably, the between-group fMRI analyses described below were re-

peated after excluding patients with PTSD or patients with alcohol

abuse. These additional analyses did not produce substantively differ-

ent results, and so are not presented. Patients who presented as euthy-

mic at the time of contact with the research program, who reported

claustrophobia or who had any contraindications for participation in

the MRI scanner were not enrolled in the study. Additionally, data

from one subject was excluded because treatment with anti-depressants

was commenced between the date of the SCID interview and the scan

session. A control group (CTL) of 19 healthy volunteers matched for

age, sex and handedness were recruited from the community for the

study. Participants in the CTL had no history of psychiatric illness as

determined by the SCID, and reported having no first-degree relative

with a known DSM-IV axis-1 or axis-2 disorder (Mage¼ 27.63,

s.d.¼ 11.0, range¼ 18–54; 13 females, 6 males). There was no signifi-

cant difference in age between groups [t(36)¼ 0.231; P > 0.8] nor were

there significant differences in intelligence quotient (IQ) on the

Wechsler Abbreviated Scale of Intelligence [WASImean(s.d):

MDD¼ 108.65 (12.3), CTL¼ 113.17 (8.9); t(33)¼ 1.251, P > 0.2;

WASI scores were missing from 3 participants (2 in the MDD

group) due to attrition]. Immediately before scanning, participants

completed the Beck Depression Inventory (BDI; Beck et al., 1996).

As expected, participants with MDD had significantly higher BDI

scores than controls [BDImean(s.d): MDD¼ 25.53 (10.4), CTL¼ 1.6

(2.3); t(36)¼ 9.768, P < 0.001]; the mean BDI score for the MDD

group was indicative of moderate depression, although severity

ranged from mild to severe. The mean estimated length of the current

depressive episode at the time of scan based on subject report was 7.8

weeks (ranging from 2 to 54 weeks), although the median length was 4

weeks. All subjects granted informed written consent, and the study

was approved by the Health Science Research Ethics Board at the

University of Western Ontario, Canada.

Task design

The emotion regulation task was designed to have participants actively

engage in a strategy to alter the feelings elicited by sad (negative) and

positive emotional scenes (for task details see Figure 1), similar to

previous studies in healthy controls (Ochsner et al., 2002, 2004).

However, the current method differed from previous studies in that

the regulation techniques were developed to reflect a strategy, similar

to those used in cognitive behavioural and other cognitive-based thera-

pies (CBT), to address the cognitive triad of dysfunctional schematic

thinking associated with MDD (Beck et al., 1979). This strategy tar-

geted the tendency of depressed patients to have negative thoughts

about the self (e.g. feelings of worthlessness), the world or environment

(e.g. the world is unfair) and the future (e.g. the future is hopeless). In

the enhance condition, participants were instructed to ‘Acknowledge

that the scene is positive. Further, that it does affect you, things can

and do get even better and the scene does reflect the real world’.

During the reduce condition, participants were instructed to

‘Acknowledge that the scene is negative. However, it does not affect

you, things do not stay this bad, and the scene does not reflect the

whole world’. It was further emphasized that participants should, using

internal dialogue, elaborate on any aspect of the script using

self-relevant examples they believed would be most effective. There

were 20 trials in each of the four experimental conditions (i.e. attend

positive, attend negative, reduce negative, enhance positive), for a total

of 80 trials across four runs. Additionally, the trial order in each run

was randomized, and the four runs were counterbalanced across sub-

jects. In a separate session, before being scanned, participants were
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trained to use the regulation strategies and underwent a practice ses-

sion of the task.

Stimuli

A total of 20 sad and 20 positive scenes were used in the task, each one

appearing twice (never in the same run), once in an attend condition

and once in a regulate condition, with the order counterbalanced

across participants. The emotional scenes were taken from the

International Affective Picture System (IAPS; Lang et al., 2008), and

were not significantly different in terms of normative ratings of arousal

[Mpositive (s.d.)¼ 5.03 (0.55), Msad (s.d.)¼ 5.08 (0.62); P > 0.8]. To

increase the relationship between the stimuli and the emotions central

to depression, images were chosen on the basis of refined normative

ratings developed by Mikels et al. (2005). These refined ratings allowed

us to identify a subset of scenes that elicited one discrete emotion more

than others. Specifically, our sad scenes were those that reliably elicit

sadness, and the positive scenes were images that reliably elicit con-

tentment/amusement (Mikels et al., 2005). A list of the IAPS images

used can be found in Supplementary Table 1.

fMRI data acquisition

The experimental task was completed at the Centre for Metabolic

Mapping, in the Robarts Research Institute’s 3T Siemens scanner

equipped with a 32 channel head coil. Participants completed six func-

tional MRI runs during which blood-oxygenation-level-dependent

(BOLD) changes were measured using a T2*-gradient echo-planar

sequence (EPI; time to repetition¼ 3000 ms, time to echo¼ 30 ms;

120� 120 mm matrix; field of view¼ 24 cm). Seventy-nine volumes

were collected per run, resulting in run durations of 3.95 min.

Complete brain coverage was obtained with 45 interleaved slices of

2 mm by 2 mm in plane and a slice thickness of 2.5 mm (forming

voxels of 2� 2� 2.5 mm). Our current parameters involved

whole-brain coverage and were not specifically optimized for signal

detection in the ventral prefrontal cortex (PFC). There was notable

susceptibility-artefact in regions of the ventral PFC (see

Supplementary Figure 1), which may account for a lack of effects in

these regions (Devlin et al., 2000; Veltman et al., 2000). The session

ended with a high-resolution anatomical scan that covered the whole

brain (time to repetition¼ 2300 ms, time to echo¼ 4.25 ms; Field of

View¼ 25.6 cm; 192 axial slices; voxel dimensions¼ 1 mm isovoxels;

256� 256 mm matrix).

Behavioural analysis

Participants’ mean emotional ratings were calculated for each of the

four conditions from the trial-by-trial emotional rating screen

(the 4-point Likert scale). The individual means were entered into

two independent 2 (Group: CTL, MDD)� 2 (Condition: Regulation,

Attend) ANOVAs (analyses of variance, one for trials with sad scenes

and the other for positive scene trials). We also computed both nega-

tive (sad trials) and positive (positive trials) regulation efficacy scores

at the individual subject level. These scores reflected the mean absolute

difference between emotional ratings during regulate-minus-attend

Fig. 1 The emotion regulation task and behavioural results. Top�Sample of an enhance-positive trial. Each trial of the emotion regulation task was composed of five events: (i) a fixation cross; (ii) an
instruction about the type of strategy to use while viewing the scene (i.e. attend positive or negative, reduce negative or enhance positive); (iii) a scene depicting either positive or negative emotional
significance (i.e. a standardized image shown to elicit contentment/amusement or sadness); (iv) a rating screen with a 4-point Likert scale during which participants rated the feelings evoked by the picture; (v)
a screen with the word ‘relax’, during which time the participants could clear their minds before the next trial. The three instructional words of ‘attend’, ‘enhance’ and ‘reduce’ each corresponded to an emotion
regulation strategy that was taught to the participants before beginning the experiment. During the attend conditions, participants were instructed to identify the feeling associated with the scene and
experience whatever feelings come naturally without changing them. The positive and negative scenes were taken from the IAPS database (IAPS image not shown, see Supplementary Table 1).
Bottom-Left�Mean emotional rating for negative trials [y-axis: strength of emotional response (ranging from 1¼weak to 4¼ strong)] reveals a main effect of instruction and a significant group� instruction
interaction showing enhanced regulation efficacy in CTL relative to MDD group. Error bars depict standard error of the mean. Bottom-right�mean emotional rating for positive trials (y-axis: 1¼weak positive to
4¼ strong positive emotional response) reveals a main effect of group, a main effect of instruction and a significant group by instruction interaction characterized by enhanced regulation efficacy in CTL relative
to MDD group (p). Error bars depict standard error of the mean. All effects were significant at P < 0.05.
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trials. Thus, in the context of the current task a higher value for either

negative or positive regulation efficacy was indicative of greater regu-

lation success. This was used to examine correlations between regula-

tion efficacy and ratings of depression severity (BDI), as well as

regulation efficacy and functional activity.

fMRI analysis

Individual and group analyses were conducted using Analysis of

Functional NeuroImages software (Cox, 1996). The first four volumes

of each of the six runs were discarded to insure that magnetization

equilibrium was reached. Motion correction was completed by regis-

tering all (BOLD) data in each run of the task to the first volume of the

last experimental run. Next, the functional data were aligned to the

anatomical data and both were transformed into the standard space of

Talairach and Tournoux. The dataset for each subject was spatially

smoothed with a 4 mm isotropic Gaussian kernel, and the time series

data of each voxel was scaled such that the coefficients produced by the

regression analysis represented the percent signal change from the

mean voxel activity. A first-level general linear model regression ana-

lysis was performed including a regressor for each of the four condi-

tions of interest (attend positive, attend negative, enhance positive,

reduce negative), which began at emotional scene onset and ended

with emotional scene offset (a duration of 8 s). Regressors of

no-interest were modelled for trials in which no response was detected,

for the instruction epoch, and for the emotional rating and relax

epochs. Participants were instructed to only respond during the

rating epoch so as to ensure that BOLD activity related to motor re-

sponses did not confound the events of interest. All regressors were

produced by convolving the train of stimuli with the gamma-variate

haemodynamic response function. To account for voxel-wise corre-

lated drifting, baseline plus linear drift and quadratic trend were also

modelled. This produced beta coefficients and t-values for each of our

experimental conditions at each voxel, which were then used in the

group analyses described below.

To test our primary hypotheses concerning the neural correlates of

emotion regulation in MDD, we performed analyses examining the

effects of group (MDD vs CTL) on regulating positive and negative

affect. This between-group analysis was performed using the

mixed-effects multilevel analysis function in the AFNI software pack-

age (Chen et al., 2012). A two-sample mixed effects analysis was then

possible for each of the experimental conditions. Whole-brain analysis

of the BOLD data identified significant clusters that survived a

family-wise error rate (FWE) correction to P < 0.05 (k > 47 contiguous

voxel; P < 0.005 uncorrected threshold, two-tailed). For the amygdala,

an a priori region of interest (ROI), we used a more liberal threshold of

P < 0.01 (uncorrected, k� 10 contiguous voxels) consistent with

thresholds adopted in previous studies of emotion in depression

(Fales et al., 2008; Victor et al., 2010).

RESULTS

Behavioural results

To assess emotion regulation ability, affect ratings were obtained from

each participant on each trial. For sad trials, the 2 (Group)� 2

(Instruction) ANOVA revealed no main effect of group

[F(1, 36)¼ 0.042, P > 0.8]. However, a main effect of instruction

[F(1, 36)¼ 47.10, P < 0.001] emerged; negative affect ratings were sig-

nificantly reduced in the regulate relative to attend condition.

Importantly, a significant group� instruction interaction was also

revealed [F(1, 36)¼ 9.59, P < 0.005; Figure 1A] characterized by

enhanced regulation of negative emotional reactivity in the CTL

group. Follow-up within-group contrasts of the reduce vs attend sad

conditions revealed that both the CTL group [t(18)¼�7.11, P < 0.001,

two-tailed] and MDD group [t(18)¼�2.64, P < 0.05] reported signifi-

cantly less negative reactivity during the regulate condition. A

follow-up test of regulation efficacy scores confirmed that the CTL

group were significantly more effective than those with MDD at reg-

ulating sad affect [t(36)¼ 2.05, P < 0.05).

For positive trials, the 2 (Group)� 2 (Instruction: attend positive,

enhance positive) ANOVA revealed a main effect of group such that

the CTL group rated the scenes as more positive overall

[F(1, 36)¼ 9.08, P < 0.005], and a main effect of instruction such

that both groups reported significantly greater positive reactivity

when enhancing positive affect [F(1, 36)¼ 27.91, P < 0.001]. There

was also a significant two-way interaction [F(1, 36)¼ 4.186, P < 0.05,

Figure 1B], which indicated that the CTL group showed enhanced

up-regulation of positive affect. Follow-up within-group contrasts of

enhance positive vs attend positive conditions revealed that whereas

the CTL group reported a significant increase in positive emotional

reactivity [t(18)¼ 6.46, P < 0.001], the MDD group’s rating of positiv-

ity in the enhance condition reflected only a trend [t(18)¼ 1.97,

P¼ 0.065, two-tailed]. Lastly, the regulation efficacy score for positive

stimuli was significantly greater in the CTL relative to MDD group

[t(36)¼ 3.01, P < 0.005].

To determine whether a relationship existed between regulation ef-

ficacy for both the sad and positive emotional contexts, a correlation

analysis within each group was performed. This analysis revealed a

significant positive correlation between negative and positive regula-

tion efficacy in both the CTL (r¼ 0.705, P < 0.001) and MDD groups

(r¼ 0.631, P < 0.005). Thus, the capacity to regulate negative affect was

also associated with more effective regulation of positive affect. Finally,

there was no significant relationship between either positive or nega-

tive regulation efficacy and depression severity (BDI score; P > 0.2)

within the MDD group.

fMRI results

BOLD response to trials with sad scenes

We first investigated the BOLD response for trials with sad scenes

between groups (P < 0.005; P < 0.05 FWE corrected; see Table 1 for

full summary). Irrespective of instruction, sad scenes produced greater

activity in an anterior region of VLPFC [Brodmann location (BA) 10/

47] in the CTL relative to MDD group (main effect of group; Figure 2A

and B). Next, collapsing across groups, we examined the neural re-

sponse to down-regulate negative affect (main effect of instruction:

reduce negative–attend negative; Figure 3C–G). Consistent with pre-

vious studies of emotion regulation in both healthy and depressed

individuals, we found significantly greater activity for the reduce nega-

tive condition in left DLPFC (BA 8/9/10) and right DLPFC (BA 10/9),

left VLPFC (BA 47/45), left temporoparietal junction (BA 39) and left

middle temporal gyrus (BA 21). For the interaction term comparing

the two groups in negative affect regulation capacity [MDD

(reduce-attend negative) vs CTL (reduce-attend; Figure 2H–K)], sig-

nificant activity was observed in left lingual gyrus (BA 18), right post-

central gyrus (BA 3/4) and right inferior parietal lobe (BA 40/7). The

nature of this interaction in all regions was similar. Whereas for the

CTL group, attempts to reduce sadness were accompanied by reduc-

tions in activity in these regions (P < 0.05 in each case), similar at-

tempts were associated with enhanced activity in all these areas for the

MDD group (P < 0.05 in each case, except the middle occipital gyrus,

P¼ 0.057). Notably, for the a priori amygdala ROI, an interaction was

also observed (Figure 2K) whereby CTLs showed greater activity in the

attend relative to reduce condition, and patients with MDD displayed

the opposite effect. Bar plots of percent signal change for each group

and condition can be found in Supplementary Figures 2 and 3.
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BOLD response to trials with positive scenes

We analyzed the BOLD response to trials with scenes that elicit positive

affect (P < 0.005; P < 0.05 FWE corrected; see Table 2 for full results).

A main effect of group emerged in bilateral DMPFC/supplemental

motor area (BA 6), characterized by greater activity in the MDD com-

pared with CTL group. Collapsing across groups, there was signifi-

cantly greater activity in positive trials during the enhance relative to

attend condition (main effect of instruction; Figure 3A–G) in bilateral

DMPFC/supplemental motor area (BA 6), bilateral anterior VMPFC

(BA 10), bilateral perigenual anterior cingulate cortex (pgACC: BA

32/24), left VLPFC (BA 47, extending into superior temporal gyrus),

left VLPFC (BA 47, extending into lateral orbital frontal cortex), left

temporoparietal junction (BA 39) and right and left ventral striatum.

Conversely, there was greater activity in the right DLPFC (BA 9) in the

attend relative to enhance condition irrespective of group. Finally, the

interaction of MDD (enhance-attend positive) vs CTL (enhance-attend

positive) revealed no significant clusters of activity.

Comparison of positive and negative regulation

As an exploratory analysis, we compared the regulation of positive

(enhance-attend) with the regulation of negative (reduce-attend) dir-

ectly. This revealed a significant main effect of regulation condition

irrespective of group. Specifically, there was greater activity in the

MPFC and left ventral striatum during the enhancement of positive

scenes, while there was greater activity in the DLPFC and inferior

parietal lobe during the regulation of sad scenes. There was no signifi-

cant group by regulation condition interaction (see Supplementary

Figure 4 and Supplementary Table 2 for full results).

Relationship between brain activity and regulation efficacy

Given that the main effect of instruction for both sad and positive trials

revealed recruitment of DLPFC and VLPFC for both groups, we next

examined whether there were group differences in the relationship

between activity in these regions and regulation efficacy. There was a

significant positive correlation between negative regulation efficacy

and percent signal change for reduce minus attend negative conditions

within DLPFC (Figure 2F and bottom right panel) of the CTL

(r¼ 0.50, P < 0.05, two-tailed] but not the MDD group (r¼ 0.198,

P > 0.4, two-tailed], and a similar trend within the VLPFC

(Figure 2C; CTL: r¼ 0.45, P¼ 0.056, two-tailed; MDD: r¼�0.01,

P > 0.9, two-tailed). For positive trials, we found no significant

within-group correlations in either DLPFC or VLPFC regions.

However, given the role of the ventral striatum in reward processing

and that dysfunction in this region is thought to contribute to depres-

sion (Pizzagalli et al., 2009), we performed two additional correlations

in the ventral striatum clusters identified by the main effect of

Fig. 2 BOLD response for the whole brain analysis of negative trials and the relation to regulation efficacy. Top-left�main effect of group demonstrates greater activity in the left (A) and right (B) VLPFC of the
CTL relative to the MDD group. Bottom-left�Main effect of instruction shows enhanced activity for reduce negative relative to attend negative trials in the (C) left VLPFC, (D) left middle temporal gyrus, (E) left
temporoparietal junction, (F) left DLPFC and (G) right DLPFC. Top-right�Group� instruction interaction revealed that whereas brain activity was attenuated in the CTL group on reduce relative to attend
negative trials, activity was enhanced in the MDD group within the (H) left lingual gyrus, (I) right postcentral gyrus, (J) right inferior parietal lobe and (K) right amygdala* (displayed at a thresholded of
P < 0.01, two-tailed, uncorrected). Bottom-right�Negative regulation efficacy was positively correlated with percent signal change in the reduce vs attend conditions in the DLPFC (F) of the CTL group
(P < 0.05), but not the MDD group (P > 0.4). All regions were thresholded at P < 0.005, two-tailed and corrected to P < 0.05 (FWE, k > 47), except where noted (*). Active clusters are displayed on the averaged
T1-weighted Talairach–Tournoux template (TT_avg152) in AFNI. Refer to Supplementary Figure 2 for bar plots of percent signal change.
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instruction. A significant positive correlation between positive regula-

tion efficacy and percent signal change for enhance minus attend posi-

tive trials emerged in the left ventral striatum of the CTL but not the

MDD group (Figure 3F and bottom panel; CTL: r¼ 0.48, P < 0.05,

two-tailed; MDD: r¼ 0.26, P > 0.2, two-tailed). There was a similar

trend for the right ventral striatum (Figure 3G; CTL: r¼ 0.40,

P¼ 0.09, two-tailed; MDD: r¼ 0.25, P > 0.3). One possibility is that

the null correlation result in depressed patients could be attributed to

restricted variance. To examine this possibility, an F-test of equality of

variance was performed. This test indicated that this null finding could

not be explained by unequal variance between groups for either nega-

tive regulation efficacy scores (P > 0.5) or positive regulation efficacy

scores (P > 0.1). It is important to note, however, between group com-

parisons of the r-values (Fisher r-to-z) and regression slopes identified

in these analyses reveal no significant between-group differences

(P > 0.1, all two-tailed).

Relationship between brain activity and depression severity

Two whole-brain analyses were performed within the MDD group to

determine whether depression severity, as indexed by the BDI, corre-

lated with the magnitude of BOLD change from regulate-minus-attend

conditions (one for sad trials, the other for positive trials). This re-

vealed no significant clusters of activity after correcting for multiple

comparisons.

DISCUSSION

The current study adapted experimental emotion regulation tech-

niques to reflect elements of cognitive theory and associated psy-

chotherapies to delineate neurocognitive abnormalities associated

with modulating the negative cognitive triad in MDD. Although the

CTL group was significantly better than depressed patients at regulat-

ing both positive and negative affect, evidence was also observed for

the successful regulation of sad affect, and to a lesser extent, positive

affect in participants with MDD. The capacity to regulate negative af-

fect was highly correlated with the capacity to regulate positive affect.

At the neural level, significantly greater recruitment of DLPFC and

VLPFC during the regulate vs attend negative stimulus condition

was observed in both groups; however, a significant correlation be-

tween brain activity and subjective indices of regulation success existed

only in CTLs. Additionally, a group by instruction interaction revealed

that only CTLs exhibited reduced activity in regions implicated in the

representation of sensory information and emotional encoding. For

example the amygdala, and visual areas known to respond more ro-

bustly to emotionally significant stimuli (Vuilleumier et al., 2001;

Pessoa et al., 2002; Ishai et al., 2004; Padmala and Pessoa, 2008,

2011; Lindquist et al., 2012). Similarly, during positive affect enhance-

ment, we observed recruitment of VLPFC and DMPFC in both groups.

We also observed increased activity in neural regions associated with

reward and emotionally salient stimulus encoding, particularly bilat-

eral regions of ventral striatum; however, only in controls was activity

in this region significantly correlated with ratings of positive affect. The

results provide partial evidence that a dissociation exists in depressed

patients between activity in neural regions associated with emotional

control and encoding, and indices of regulation success.

Neural regions for the control of emotion

In the current task, both groups exhibited a similar increase in activity

of dorsal PFC regions and VLPFC while regulating both sad and posi-

tive affect. These neural regions are widely implicated in healthy emo-

tion regulation (Ochsner et al., 2004; Ochsner and Gross, 2005;

Mitchell, 2011; Mitchell and Greening, 2012). One means by which

DLPFC is thought to exert emotional control is via an attention-related

amplification of goal-specific or alternate representations in

occipito-temporal cortices, which compete in an inhibitory fashion

with emotional representations (Blair and Mitchell, 2009; Mitchell,

2011). It has also been suggested that dorsal regions of prefrontal

cortex are involved in explicit reasoning about how emotional associ-

ations can be changed (Ochsner and Gross, 2005), or are involved in

the neural representation of social and emotional processes (Wood and

Grafman, 2003; Moll et al., 2005). In addition, dorsal regions might

reduce activity in emotion-related brain areas such as the amygdala via

second-order connections with MPFC (Delgado et al., 2008). It has

been suggested that VLPFC is involved in updating the representation

of optimal motor responses (Mitchell et al., 2009; Greening et al.,

2011), in the active regulation of an emotional response (Phan et al.,

2005; Wager et al., 2008) or in updating the representation of both

optimal motor and emotional responses (Kringelbach and Rolls, 2003;

Mitchell, 2011). In line with these ideas, lesions to lateral areas of

DLPFC (relative to medial PFC) are associated with increased vulner-

ability to depression (Koenigs et al., 2008), and activity in both DLPFC

and VLPFC has been associated with regulation success in healthy

controls (Phan et al., 2005; Wager et al., 2008). The current study

demonstrated, however, that despite both groups showing similar pat-

terns of activation in DLPFC during negative affect regulation, only in

the CTL group was this activity significantly correlated with regulation

efficacy. This finding should be interpreted with caution, however, as

the follow-up comparisons of the two correlations revealed no signifi-

cant between-group differences. Notably, this type of between-group

comparison of correlations can suffer from low power (Yarkoni, 2009),

and so larger sample sizes are required to address this question.

Furthermore, relative to individuals with MDD, negative affect regu-

lation in the CTL group was associated with significantly reduced

Table 1 Significantly active clusters from the group by instruction analysis of sad
conditions

Location R/L BA X, Y, Z Cluster size T-value

Main effect of group: CTL (reduceþ attend negative) > MDD (reduceþ attend negative)
VLPFC R 10/47 45, 45, �1 81 3.36
VLPFC L 10/47 �41, 41, �4 55 3.65

Main effect of instruction: MDD and CTL (reduce negative > attend negative)
VLPFC L 47/45 �48, 21, 1 152 3.42
DLPFC L 9/8/10 �28, 46, 37 166 3.53
DLPFC/superior frontal gyrus R 10/9 26, 48, 31 62 3.49
DLPFC/middle frontal gyrus L 6/9 �40, 8, 50 57 3.25
Middle frontal gyrus L 6/8 �44, 12, 59 93 3.59
Superior frontal gyrus R 6/8 16, 24, 62 84 3.40
Supplemental motor area R/L 6 �4, 5, 68 410 3.67
Temporoparietal junction L 39 �51, �57, 23 552 3.73
Temporal pole/middle temporal gyrus L 38/21 �51, 14, �33 82 3.61
Middle temporal gyrus L 21 �55, �31, �7 140 3.49
Culmen/cerebellum R 36, �50, �34 260 3.82

Interaction: MDD (reduce� attend negative) > CTL (reduce� attend negative)
Precentral gyrus/middle frontal gyrus L 6/9 �47, �1, 43 72 3.33
Postcentral gyrus R 3/4 45, �21, 50 70 3.42
Inferior parietal lobe R 40/7 29, �51, 53 74 3.51
Precuneus L 19 �20, �84, 32 117 3.38
Cuneus R 19 30, �82, 30 56 3.39
Middle occipital gyrus L 19/18 �36, �86, 7 83 3.36
Lingual gyrus L 18 �16, �77, 30 62 3.35
Amygdala* R 23, 1, �11 14 2.99

The Brodmann location (BA) is provided, along with coordinates for the centre of mass in Montreal
Neurological Institute (MNI) space (X, Y, Z).
Cluster size represents the number of contiguous voxels sharing a face, and the T-value is the mean
T-value for all voxels in the cluster.
All clusters were FWE corrected to P < 0.05 (uncorrected threshold of P < 0.005), with the exception
of the amygdala(*), which was thresholded at P < 0.01 (uncorrected).
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activity in neural regions associated with encoding emotional sensory

information, including visual areas, and the amygdala (Padmala and

Pessoa, 2008, 2011). Together with the behavioural results, the current

findings suggest that appropriate levels of prefrontal cortex activity

may exist in patients with MDD without commensurate relief of nega-

tive affect or reductions in sensory encoding of negative stimuli. The

results of the current study are consistent with each of the models of

DLPFC and VLPFC discussed above, and suggest that these regions are

involved in the modulation of emotional stimuli and not simply re-

sponse suppression. Further work is required to determine whether the

reduced efficacy is associated with dysfunction in outputs of

emotion-related brain areas targeted by PFC, or due to abnormalities

in the nature of the computations performed by PFC during emotion

regulation. For example, PFC activity in patients may be dispropor-

tionately devoted to representing task-demands or conflict rather than

being allocated to performing executive control over emotion.

Alternatively, the modified context formed during emotion regulation

may be represented in PFC, but varies in emotional content between

groups (Moll et al., 2005).

The current study is only the second to examine the online enhance-

ment of positive affect in patients with MDD, and the first to relate

activation to indices of regulation success. Significantly enhanced ac-

tivity in left VLPFC , DMPFC, and regions of DLPFC was observed

during attempts to up-regulate positive affect. Similar increases in ac-

tivation during this condition were also observed in both groups in the

ventral striatum. However, only in the CTL group was this enhance-

ment significantly correlated with regulation success. Interestingly, this

region is believed to be a target of PFC regions like VLPFC during

emotion regulation (Wager et al., 2008; Peters et al., 2009). The current

results are consistent with suggestions that emotion-related abnorm-

alities within the striatum are implicated in depression (Epstein et al.,

2006; Bluhm et al., 2009; Heller et al., 2009; Osuch et al., 2009;

Robinson et al., 2012). They are also consistent with previous research

showing that greater DLPFC and VLPFC activation to emotional cues

before a course of CBT was positively correlated with treatment success

(Ritchey et al., 2011). When enhancing positive emotion, irrespective

of group, we also observed a cluster in VLPFC that included a small

part of anterior superior temporal lobe. In depression, generalized

self-blame has been found to be associated with functional connectivity

disruption between the anterior superior temporal lobe and regions of

the subgenual anterior cingulate cortex (Green et al., 2012). This raises

the possibility that reappraisal involves modifications to the represen-

tation of self-concepts, a process that is ineffective in depression (Beck

et al., 1979).

Limitations

This study uses a standard explicit emotion regulation paradigm in

depressed patients that incorporated strategies from cognitive theories

of depression and associated psychotherapies. It is important to ac-

knowledge the limitations that any laboratory-based task has as it is an

Fig. 3 BOLD response for the whole brain analysis of positive trials and the relation to regulation efficacy. Top�Main effect of instruction revealed increased activity for enhance positive relative to attend
positive trials in the (A) bilateral DMPFC/supplemental motor area, (B) left VLPFC, (C) left temporoparietal junction, (D) bilateral anterior VMPFC, (E) bilateral pgACC, (F) left ventral striatum and (G) right ventral
striatum. Bottom�Positive regulation efficacy was positively correlated with the difference in percent signal change between the enhance vs attend positive conditions in the left ventral striatum (F) of the CTL
group, but not the MDD group. All regions were thresholded at P < 0.005, two-tailed and corrected to P < 0.05 (FWE, k > 47). Active clusters are displayed on the averaged T1-weighted Talairach–Tournoux
template (TT_avg152) in AFNI. Refer to Supplementary Figure 3 for bar plots of percent signal change.
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approximation of the therapeutic context. CBT involves training over

many sessions. Furthermore, the stimuli used in the present study to

trigger an emotional response were standardized images rather than

autobiographical or idiosyncratic cues (Eddington et al., 2009;

Lemogne et al., 2009), which is an important consideration given evi-

dence that different stimuli can yield distinct effects (Siegle et al., 2007;

Kross et al., 2009). Additionally, we have no direct means of assessing

task compliance in the current task. It is possible that rumination by

the depressed group might have impaired their ability to use the regu-

lation strategy throughout the entire trial (Levens et al., 2009).

Nevertheless, it is notable that the current emotion regulation strategy

modulated neural areas previously shown to be affected in patients

following a formal treatment course with CBT (e.g. Goldapple et al.,

2004; Jensen et al., 2012). Moreover, patients also reported signifi-

cant down-regulation of negative affect, and a near significant

up-regulation of positive affect.

CONCLUSION

The current study raises the possibility that depression is not associated

with a failure to recruit neural regions implicated in the regulation of

emotion, but rather, that the recruitment of such regions is less effect-

ive in modulating subjective emotional states and activity in emotional

and sensory brain areas. Because activity in regions associated with

cognitive control was appropriate in depressed patients, these results

are also consistent with suggestions that depression is associated with

significant regulatory efforts over negative affect without commensur-

ate relief (Segal et al., 2006; Farb et al., 2010). This may explain why

depression can persist in the presence of normal (e.g. Beauregard et al.,

2006), excessive (e.g. Johnstone et al., 2007) or reduced (e.g. Erk et al.,

2010) recruitment of areas associated with emotion regulation. Further

work is required to determine whether the reduced efficacy is due to

abnormalities in the nature of the computations performed by PFC

(e.g. impaired cognitive control, Siegle et al., 2007) or due to dysfunc-

tion in the output of emotion-related regions targeted by PFC.

Nevertheless, the current study highlights the potential use of neuroi-

maging to test the efficacy of existing or novel therapies (Linden, 2006;

De Raedt et al., 2010), and also the need to delineate potential syner-

gistic interactions between different pharmacological interventions and

psychotherapies.
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