38 research outputs found

    Cell type-specific regulation of CCN2 protein expression by PI3K–AKT–FoxO signaling

    Get PDF
    The biological activity of connective tissue growth factor (CTGF, CCN2) is regulated at the level of intracellular signaling leading to gene expression, and by its extracellular interaction partners which determine the functional outcome of CCN2 action. In this overview, we summarize the data which provide evidence that one of the major signaling pathways, phosphatidylinositol-3 kinase (PI3K)–AKT signaling, shows a remarkable cell type-dependence in terms of regulation of CCN2 expression. In smooth muscle cells, fibroblasts, and epithelial cells, inhibition of this pathway either reduced CCN2 expression or was not involved in CCN2 gene expression depending on the stimulus used. In microvascular endothelial cells by contrast, activation of PI3K–AKT signaling was inversely related to CCN2 expression. Upregulation of CCN2 upon inhibition of PI3K–AKT was also observed in primary cultures of human endothelial cells (HUVEC) exposed to laminar flow in an in vitro flow-through system. In different types of endothelial cells, FoxO transcription factors, which are negatively regulated by AKT, were identified as potent activators of CCN2 gene expression. In HUVEC, we observed a correlation between enhanced nuclear localization of FoxO1 and increased synthesis of CCN2 protein in areas of non-uniform shear stress. These data indicate that FoxO proteins are key regulators of CCN2 gene expression which determine the effect of PI3K–AKT activation in terms of CCN2 regulation. Short summary Phosphatidylinositol-3 kinase (PI3K)–AKT signaling shows a remarkable cell type-dependence in terms of regulation of CCN2 expression. In endothelial cells activation of PI3K - AKT signaling was inversely related to CCN2 expression. FoxO transcription factors, which are negatively regulated by AKT, were identified as potent activators of CCN2 gene expression

    Nano-Stenciled RGD-Gold Patterns That Inhibit Focal Contact Maturation Induce Lamellipodia Formation in Fibroblasts

    Get PDF
    Cultured fibroblasts adhere to extracellular substrates by means of cell-matrix adhesions that are assembled in a hierarchical way, thereby gaining in protein complexity and size. Here we asked how restricting the size of cell-matrix adhesions affects cell morphology and behavior. Using a nanostencil technique, culture substrates were patterned with gold squares of a width and spacing between 250 nm and 2 µm. The gold was functionalized with RGD peptide as ligand for cellular integrins, and mouse embryo fibroblasts were plated. Limiting the length of cell-matrix adhesions to 500 nm or less disturbed the maturation of vinculin-positive focal complexes into focal contacts and fibrillar adhesions, as indicated by poor recruitment of α5-integrin. We found that on sub-micrometer patterns, fibroblasts spread extensively, but did not polarize. Instead, they formed excessive numbers of lamellipodia and a fine actin meshwork without stress fibers. Moreover, these cells showed aberrant fibronectin fibrillogenesis, and their speed of directed migration was reduced significantly compared to fibroblasts on 2 µm square patterns. Interference with RhoA/ROCK signaling eliminated the pattern-dependent differences in cell morphology. Our results indicate that manipulating the maturation of cell-matrix adhesions by nanopatterned surfaces allows to influence morphology, actin dynamics, migration and ECM assembly of adhering fibroblasts

    Interaction of microtubules and actin during the post-fusion phase of exocytosis

    Get PDF
    Exocytosis is the intracellular trafficking step where a secretory vesicle fuses with the plasma membrane to release vesicle content. Actin and microtubules both play a role in exocytosis; however, their interplay is not understood. Here we study the interaction of actin and microtubules during exocytosis in lung alveolar type II (ATII) cells that secrete surfactant from large secretory vesicles. Surfactant extrusion is facilitated by an actin coat that forms on the vesicle shortly after fusion pore opening. Actin coat compression allows hydrophobic surfactant to be released from the vesicle. We show that microtubules are localized close to actin coats and stay close to the coats during their compression. Inhibition of microtubule polymerization by colchicine and nocodazole affected the kinetics of actin coat formation and the extent of actin polymerisation on fused vesicles. In addition, microtubule and actin cross-linking protein IQGAP1 localized to fused secretory vesicles and IQGAP1 silencing influenced actin polymerisation after vesicle fusion. This study demonstrates that microtubules can influence actin coat formation and actin polymerization on secretory vesicles during exocytosis

    Cucurbitacin I Inhibits Cell Motility by Indirectly Interfering with Actin Dynamics

    Get PDF
    Cucurbitacins are plant natural products that inhibit activation of the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway by an unknown mechanism. They are also known to cause changes in the organization of the actin cytoskeleton. actin depolymerization experiments, cucurbitacin I had no effect on the rate of actin filament disassembly at the nanomolar concentrations that inhibit cell migration. At elevated concentrations, the depolymerization rate was also unaffected, although there was a delay in the initiation of depolymerization. Therefore, cucurbitacin I targets some factor involved in cellular actin dynamics other than actin itself. Two candidate proteins that play roles in actin depolymerization are the actin-severing proteins cofilin and gelsolin. Cucurbitacin I possesses electrophilic reactivity that may lead to chemical modification of its target protein, as suggested by structure-activity relationship data. However, mass spectrometry revealed no evidence for modification of purified cofilin or gelsolin by cucurbitacin I.Cucurbitacin I results in accumulation of actin filaments in cells by a unique indirect mechanism. Furthermore, the proximal target of cucurbitacin I relevant to cell migration is unlikely to be the same one involved in activation of the JAK2/STAT3 pathway

    Sagacious Reasoning: Henry Odera Oruka in Memoriam

    No full text
    corecore