77 research outputs found

    Genome-wide linkage analysis of inguinal hernia in pigs using affected sib pairs

    Get PDF
    BACKGROUND: Inguinal and scrotal hernias are of great concern to pig producers, and lead to poor animal welfare and severe economic loss. Selection against these conditions is highly preferable, but at this time no gene, Quantitative Trait Loci (QTL), or mode of inheritance has been identified in pigs or in any other species. Therefore, a complete genome scan was performed in order to identify genomic regions affecting inguinal and scrotal hernias in pigs. Records from seedstock breeding farms were collected. No clinical examinations were executed on the pigs and there was therefore no distinction between inguinal and scrotal hernias. The genome scan utilised affected sib pairs (ASP), and the data was analysed using both an ASP test based on Non-parametric Linkage (NPL) analysis, and a Transmission Disequilibrium Test (TDT). RESULTS: Significant QTLs (p < 0.01) were detected on 8 out of 19 porcine chromosomes. The most promising QTLs, however, were detected in SSC1, SSC2, SSC5, SSC6, SSC15, SSC17 and SSCX; all of these regions showed either statistical significance with both statistical methods, or convincing significance with one of the methods. Haplotypes from these suggestive QTL regions were constructed and analysed with TDT. Of these, six different haplotypes were found to be differently transmitted (p < 0.01) to healthy and affected pigs. The most interesting result was one haplotype on SSC5 that was found to be transmitted to hernia pigs with four times higher frequency than to healthy pigs (p < 0.00005). CONCLUSION: For the first time in any species, a genome scan has revealed suggestive QTLs for inguinal and scrotal hernias. While this study permitted the detection of chromosomal regions only, it is interesting to note that several promising candidate genes, including INSL3, MIS, and CGRP, are located within the highly significant QTL regions. Further studies are required in order to narrow down the suggestive QTL regions, investigate the candidate genes, and to confirm the suggestive QTLs in other populations. The haplotype associated with inguinal and scrotal hernias may help in achieving selection against the disorder

    Genome-Wide Analysis of Müller Glial Differentiation Reveals a Requirement for Notch Signaling in Postmitotic Cells to Maintain the Glial Fate

    Get PDF
    Previous studies have shown that Müller glia are closely related to retinal progenitors; these two cell types express many of the same genes and after damage to the retina, Müller glia can serve as a source for new neurons, particularly in non-mammalian vertebrates. We investigated the period of postnatal retinal development when progenitors are differentiating into Müller glia to better understand this transition. FACS purified retinal progenitors and Müller glia from various ages of Hes5-GFP mice were analyzed by Affymetrix cDNA microarrays. We found that genes known to be enriched/expressed by Müller glia steadily increase over the first three postnatal weeks, while genes associated with the mitotic cell cycle are rapidly downregulated from P0 to P7. Interestingly, progenitor genes not directly associated with the mitotic cell cycle, like the proneural genes Ascl1 and Neurog2, decline more slowly over the first 10–14 days of postnatal development, and there is a peak in Notch signaling several days after the presumptive Müller glia have been generated. To confirm that Notch signaling continues in the postmitotic Müller glia, we performed in situ hybridization, immunolocalization for the active form of Notch, and immunofluorescence for BrdU. Using genetic and pharmacological approaches, we found that sustained Notch signaling in the postmitotic Müller glia is necessary for their maturation and the stabilization of the glial identity for almost a week after the cells have exited the mitotic cell cycle

    Identification of differential gene expression in in vitro FSH treated pig granulosa cells using suppression subtractive hybridization

    Get PDF
    FSH, which binds to specific receptors on granulosa cells in mammals, plays a key role in folliculogenesis. Its biological activity involves stimulation of intercellular communication and upregulation of steroidogenesis, but the entire spectrum of the genes regulated by FSH has yet to be fully characterized. In order to find new regulated transcripts, however rare, we have used a Suppression Subtractive Hybridization approach (SSH) on pig granulosa cells in primary culture treated or not with FSH. Two SSH libraries were generated and 76 clones were sequenced after selection by differential screening. Sixty four different sequences were identified, including 3 novel sequences. Experiments demonstrated the presence of 25 regulated transcripts. A gene ontology analysis of these 25 genes revealed (1) catalytic; (2) transport; (3) signal transducer; (4) binding; (5) anti-oxidant and (6) structural activities. These findings may deepen our understanding of FSH's effects. Particularly, they suggest that FSH is involved in the modulation of peroxidase activity and remodelling of chromatin

    Precise mapping of breakpoints in conserved synteny between human chromosome 1 and pig chromosomes 4, 6 and 9.

    No full text
    International audienc
    corecore