1,115 research outputs found

    BFKL Azimuthal Imprints in Inclusive Three-jet Production at 7 and 13 TeV

    Get PDF
    We propose the study of new observables in LHC inclusive events with three tagged jets, one in the forward direction, one in the backward direction and both well-separated in rapidity from the each other (Mueller-Navelet jets), together with a third jet tagged in central regions of rapidity. Since non-tagged associated mini-jet multiplicity is allowed, we argue that projecting the cross sections on azimuthal-angle components can provide several distinct tests of the BFKL dynamics. Realistic LHC kinematical cuts are introduced.Comment: 17 pages, 7 figure

    Inclusive Four-jet Production at 7 and 13 TeV: Azimuthal Profile in Multi-Regge Kinematics

    Full text link
    Recently, new observables in LHC inclusive events with three tagged jets were proposed. Here, we extend that proposal to events with four tagged jets. The events are characterised by one jet in the forward direction, one in the backward direction with a large rapidity distance YY from the first one and two more jets tagged in more central regions of the detector. In our setup, non-tagged associated mini-jet multiplicity is present and needs to be accounted for by the inclusion of BFKL gluon Green functions. The projection of the cross section on azimuthal-angle components opens up the opportunity for defining new ratios of correlation functions of the azimuthal angle differences among the tagged jets that can be used as probes of the BFKL dynamics.Comment: 19 pages, 8 figures; v2: published versio

    Conditional Image-Text Embedding Networks

    Full text link
    This paper presents an approach for grounding phrases in images which jointly learns multiple text-conditioned embeddings in a single end-to-end model. In order to differentiate text phrases into semantically distinct subspaces, we propose a concept weight branch that automatically assigns phrases to embeddings, whereas prior works predefine such assignments. Our proposed solution simplifies the representation requirements for individual embeddings and allows the underrepresented concepts to take advantage of the shared representations before feeding them into concept-specific layers. Comprehensive experiments verify the effectiveness of our approach across three phrase grounding datasets, Flickr30K Entities, ReferIt Game, and Visual Genome, where we obtain a (resp.) 4%, 3%, and 4% improvement in grounding performance over a strong region-phrase embedding baseline.Comment: ECCV 2018 accepted pape

    Azimuthal-angle Observables in Inclusive Three-jet Production

    Full text link
    We discuss the impact of corrections beyond the leading-logarithmic accuracy on some recently proposed LHC observables that are based on azimuthal-angle ratios in a kinematical setup that is an extension to the usual one for Mueller-Navelet jets, after requiring an extra tagged jet in central regions of rapidity. The corrections tend to be mild which suggests that these observables are an excellent way to probe the onset of BFKL effects at hadronic colliders.Comment: 6 pages, presented by G. Chachamis at the 25th International Workshop on Deep Inelastic Scattering and Related Topics, 3-7 April 2017, Birmingham, U

    Probing the BFKL dynamics in inclusive three jet production at the LHC

    Full text link
    We propose the study of new observables in LHC inclusive events with three tagged jets, one in the forward direction, one in the backward direction and both well-separated in rapidity from the each other (Mueller-Navelet jets), together with a third jet tagged in central regions of rapidity. Since non-tagged associated mini-jet multiplicity is allowed, we argue that projecting the cross sections on azimuthal-angle components can provide several distinct tests of the BFKL dynamics. Realistic LHC kinematical cuts are introduced.Comment: 8 pages. Talk given by G. Chachamis at the 5th International Conference on New Frontiers in Physics (ICNFP2016), 6-14 July 2016, Kolymbari, Crete, Greec

    Evolution of clonal populations approaching a fitness peak

    Get PDF
    Populations facing novel environments are expected to evolve through the accumulation of adaptive substitutions. The dynamics of adaptation depend on the fitness landscape and possibly on the genetic background on which new mutations arise. Here, we model the dynamics of adaptive evolution at the phenotypic and genotypic levels, focusing on a Fisherian landscape characterized by a single peak. We find that Fisher's geometrical model of adaptation, extended to allow for small random environmental variations, is able to explain several features made recently in experimentally evolved populations. Consistent with data on populations evolving under controlled conditions, the model predicts that mean population fitness increases rapidly when populations face novel environments and then achieves a dynamic plateau, the rate of molecular evolution is remarkably constant over long periods of evolution, mutators are expected to invade and patterns of epistasis vary along the adaptive walk. Negative epistasis is expected in the initial steps of adaptation but not at later steps, a prediction that remains to be tested. Furthermore, populations are expected to exhibit high levels of phenotypic diversity at all times during their evolution. This implies that populations are possibly able to adapt rapidly to novel abiotic environments.CAPES-IGC

    Scaling, genetic drift and clonal interference in the extinction pattern of asexual populations

    Get PDF
    We investigate the dynamics of loss of favorable mutations in an asexual haploid population. In the current work, we consider homogeneous as well as spatially structured population models. We focus our analysis on statistical measurements of the probability distribution of the maximum population size N(sb) achieved by those mutations that have not reached fixation. Our results show a crossover behavior which demonstrates the occurrence of two evolutionary regimes. In the first regime, which takes place for small N(sb) , the probability distribution is described by a power law with characteristic exponent theta(d) =1.8 +/- 0.01. This power law is not influenced by the rate of beneficial mutations. The second regime, which occurs for intermediate to large values of N(sb), has a characteristic exponent theta(c) which increases as the rate of beneficial mutations grows. These results establish where genetic drift and clonal interference become the main underlying mechanism in the extinction of advantageous mutations
    • …
    corecore