2,950 research outputs found
Evaluation of black and white microfilm system
Microfilms and processes suitable for microscopying black-and-white films from the Earth Resources Aircraft Program were selected. A further purpose was to chose duplication materials which are suitable for multiple generation copies for economical dissemination to satisfy index and reference purposes. The basic requirements are that the gamma of the negative film and the overall system gamma of the multistage duplication process should be near unity, and that there should be sufficient resolution to reproduce the major salient image features of the original 9 1/2-inch format film
Dynamical properties of the single--hole -- model on a 32--site square lattice
We present results of an exact diagonalization calculation of the spectral
function for a single hole described by the -- model
propagating on a 32--site square cluster. The minimum energy state is found at
a crystal momentum , consistent with
theory, and our measured dispersion relation agrees well with that determined
using the self--consistent Born approximation. In contrast to smaller cluster
studies, our spectra show no evidence of string resonances. We also make a
qualitative comparison of the variation of the spectral weight in various
regions of the first Brillouin zone with recent ARPES data.Comment: 10 pages, 5 postscript figures include
Critiquing Variational Theories of the Anderson-Hubbard Model: Real-Space Self-Consistent Hartree-Fock Solutions
A simple and commonly employed approximate technique with which one can
examine spatially disordered systems when strong electronic correlations are
present is based on the use of real-space unrestricted self-consistent
Hartree-Fock wave functions. In such an approach the disorder is treated
exactly while the correlations are treated approximately. In this report we
critique the success of this approximation by making comparisons between such
solutions and the exact wave functions for the Anderson-Hubbard model. Due to
the sizes of the complete Hilbert spaces for these problems, the comparisons
are restricted to small one-dimensional chains, up to ten sites, and a 4x4
two-dimensional cluster, and at 1/2 filling these Hilbert spaces contain about
63,500 and 166 million states, respectively. We have completed these
calculations both at and away from 1/2 filling. This approximation is based on
a variational approach which minimizes the Hartree-Fock energy, and we have
completed comparisons of the exact and Hartree-Fock energies. However, in order
to assess the success of this approximation in reproducing ground-state
correlations we have completed comparisons of the local charge and spin
correlations, including the calculation of the overlap of the Hartree-Fock wave
functions with those of the exact solutions. We find that this approximation
reproduces the local charge densities to quite a high accuracy, but that the
local spin correlations, as represented by , are not as well
represented. In addition to these comparisons, we discuss the properties of the
spin degrees of freedom in the HF approximation, and where in the
disorder-interaction phase diagram such physics may be important
Optical conductivity of a metal-insulator transition for the Anderson-Hubbard model in 3 dimensions away from 1/2 filling
We have completed a numerical investigation of the Anderson-Hubbard model for
three-dimensional simple cubic lattices using a real-space self-consistent
Hartree-Fock decoupling approximation for the Hubbard interaction. In this
formulation we treat the spatial disorder exactly, and therefore we account for
effects arising from localization physics. We have examined the model for
electronic densities well away 1/2 filling, thereby avoiding the physics of a
Mott insulator. Several recent studies have made clear that the combined
effects of electronic interactions and spatial disorder can give rise to a
suppression of the electronic density of states, and a subsequent
metal-insulator transition can occur. We augment such studies by calculating
the ac conductivity for such systems. Our numerical results show that weak
interactions enhance the density of states at the Fermi level and the
low-frequency conductivity, there are no local magnetic moments, and the ac
conductivity is Drude-like. However, with a large enough disorder strength and
larger interactions the density of states at the Fermi level and the
low-frequency conductivity are both suppressed, the conductivity becomes
non-Drude-like, and these phenomena are accompanied by the presence of local
magnetic moments. The low-frequency conductivity changes from a sigma-sigma_dc
omega^{1/2} behaviour in the metallic phase, to a sigma omega^2 behaviour in
the nonmetallic regime. Our numerical results show that the formation of
magnetic moments is essential to the suppression of the density of states at
the Fermi level, and therefore essential to the metal-insulator transition
Trapping yards for kangaroos
Marked increases in the kangaroo and wallaby populations over large selections of Western Australia\u27s pastoral areas have produced many inquiries for some type of trapping yard which could give good results if erected at wells and other water supplies
Kangaroo disease
In March, 1954, a survey of part of the Murchison area was undertaken by Messrs Gooding and Harrison, Research Officers of the Agricultural Protection Board to investigate a reported outbreak of disease among kangaroos—predominantly Marloos, also known as Red or Plain Kangaroos (Macropus rufus)—which inhabit those areas. At the time the disease was not known by any special name so the name of Lumpy Jaw was officially adopted. Upon their return to Perth, these officers sent out a questionnaire to 67 pastoralists in the area, asking for information on the disease. Only 20 replies have been received but, from these, a lot of useful information has been obtained
- …