23 research outputs found
Composition and significance of glycosaminoglycans in the uterus and placenta of mammals
Pregnancy-related changes in rat cervical glycosaminoglycans.
Non-pregnant and pregnant rats of known gestational age were killed at intervals and their uterine cervices were excised and digested with papain. Glycosaminoglycans thus extracted were separated by cellulose acetate electrophoresis and stained with Alcian Blue. Glycosaminoglycans were identified by comparison with standards and by serial degradation with chondroitin ABC lyase, butyl nitrite and leech hyaluronidase. Dermatan sulphate, hyaluronic acid and heparan sulphate were identified and quantitative determined by densitometry. The overall concentration of glycosaminoglycans changed little during pregnancy. A 3-fold total increase in uronic acid paralleled the increase in cervical weight. Hyaluronate content, however, increased 17-fold, and rose from 6% of total glycosaminoglycans in the non-pregnant state to 33% at term. Furthermore, the ratio of hyaluronate to hydroxyproline increased 10-fold. These changes are consistent with an accumulation of hyaluronate in the interstices between collagen fibres, resulting in the softening of this tissue that is seen in late pregnancy
Surface-induced dissociation of H<sub>3</sub><sup>+</sup> and C<sub>4</sub>H<sub>10</sub><sup>+</sup> on Pt(111) and CH<sup>+</sup> on Cu(111)
The interaction of 6 keV CH+ with a Cu(111) surface and 3 keV H3+ and 2.3 keV C4H10+ with a Pt(111) surface under glancing incidence conditions (surface normal energies of 0.7 eV and 4 eV) is examined. In this geometry, the contribution of the direct "collision induced" dissociation mechanisms is minimal. We find strong evidence for direct dissociation of H3+ via charge capture to the dissociative 2p, 2E′ ground state. The surface-induced dissociation of CH+ and C4H10+ appears to proceed via two steps, namely charge capture to a bound state of the neutral molecule, followed by the transfer of translational energy into a vibrational co-ordinate of the molecule. We propose that this T-V energy transfer occurs via repeated inelastic electron scattering events. \ua9 1998 Elsevier Science B.V
Isotope effects in the dissociation dynamics of energetic hydrogen scattered from Cu(111) under glancing angles of incidence
Influence of substrate electronic excitation on atomic trajectories and molecular dissociation dynamics in surface scattering under glancing incidence conditions
Respiratory Distress Associated with Elective Repeat Cesarean Section: A two-year experience in one medical community
Role of projectile-motion-induced electronic transitions in the dissociation of fast H2 at a Cu(111) surface
Gene Expression of GLUT4 in Skeletal Muscle From Insulin-Resistant Patients With Obesity, IGT, GDM, and NIDDM
In obesity, impaired glucose tolerance (IGT), non-insulin-dependent diabetes mellitus (NIDDM), and gestational diabetes mellitus (GDM), defects in glucose transport system activity, contribute to insulin resistance in target tissues. In adipocytes from obese and NIDDM patients, we found that pretranslational suppression of the insulin-responsive GLUT4 glucose transporter isoform is a major cause of cellular insulin resistance; however, whether this process is operative in skeletal muscle is not clear. To address this issue, we performed percutaneous biopsies of the vastus lateralis in lean and obese control subjects and in obese patients with IGT and NIDDM and open biopsies of the rectus abdominis at cesarian section in lean and obese gravidas and gravidas with GDM. GLUT4 was measured in total postnuclear membrane fractions from both muscles by immunoblot analyses. The maximally insulin-stimulated rate of in vivo glucose disposal, assessed with euglycemic glucose clamps, decreased 26% in obesity and 74% in NIDDM, reflecting diminished glucose uptake by muscle. However, in vastus lateralis, relative amounts of GLUT4 per milligram membrane protein were similar (NS) among lean (1.0 ± 0.2) and obese (1.5 ± 0.3) subjects and patients with IGT (1.4 ± 0.2) and NIDDM (1.2 ± 0.2). GLUT4 content was also unchanged when levels were normalized per wet weight, per total protein, and per DNA as an index of cell number. Levels of GLUT4 mRNA were similarly not affected by obesity, IGT, or NIDDM whether normalized per RNA or for the amount of an unrelated constitutive mRNA species. Because muscle fibers (types I and II) exhibit different capacities for insulin-mediated glucose uptake, we tested whether a change in fiber composition could cause insulin resistance without altering overall levels of GLUT4. However, we found that quantities of fiber-specific isoenzymes (phopholamban and types I and II Ca2+-ATPase) were similar in all subject groups. In rectus abdominis, GLUT4 content was similar in the lean, obese, and GDM gravidas whether normalized per milligram membrane protein (relative levels were 1.0 ± 0.2, 1.3 ± 0.1, and 1.0 ± 0.2, respectively) or per wet weight, total protein, and DNA. We conclude that in human disease states characterized by insulin resistance, i.e., obesity, IGT, NIDDM, and GDM, GLUT4 gene expression is normal in vastus lateralis or rectus abdominis. To the extent that these muscles are representative of total muscle mass, insulin resistance in skeletal muscle may involve impaired GLUT4 function or translocation and not transporter depletion as observed in adipose tissue.</jats:p
Multiple Defects in the Adipocyte Glucose Transport System Cause Cellular Insulin Resistance in Gestational Diabetes: Heterogeneity in the Number and a Novel Abnormality in Subcellular Localization of GLUT4 Glucose Transporters
Mechanisms causing cellular insulin resistance in gestational diabetes mellitus are not known. We, therefore, studied isolated omental adipocytes obtained during elective cesarean sections in nondiabetic (control) and GDM gravidas. Cellular insulin resistance was attributed to impaired stimulation of glucose transport; compared with control subjects, basal and maximally insulin-stimulated transport rates (per surface area) were reduced 38 and 60% in GDM patients, respectively. To determine underlying mechanisms, we assessed the number, subcellular distribution, and translocation of GLUT4, the predominant insulin-responsive glucose transporter isoform. The cellular content of GLUT4 was decreased by 44% in GDM patients as assessed by immunoblot analysis of total postnuclear membranes. However, GDM patients segregated into two subgroups; half expected profound (76%) cellular depletion of GLUT4 and half had GLUT4 levels in the normal range. Cellular GLUT4 was negatively correlated with adipocyte size in the control subjects and GDM patients with normal GLUT4 (r = 0.60), but fell way below this continuum in GDM patients with low GLUT4, indicating that heterogeneity was not caused by differences in obesity. All GDM. distribution. In basal cells, increased amounts of GLUT4 were detected in membranes fractionating with (such that the plasma membrane GLUT4 level in GDM (such that the plasma membrane GLUT4 level in GDM patients was equal to that observed in insulin-stimulated cells from control subjects). Furthermore, insulin stimulation induced translocation of GLUT4 from low-density microsomes to plasma membranes in control subjects but did not alter subcellular distribution in GDM patients. In other experiments, cellular content of GLUT1 was normal in GDM patients, and GLUT1 did not undergo insulin-mediated recruitment to plasma membranes in either control subjects or GDM patients. A faint signal was detected for GLUT3 only in low-density microsomes and only with one of two different antibodies. In GDM, we conclude that insulin resistance in adipocytes involves impaired stimulation of glucose transport and arises from a heterogeneity of defects intrinsic to the glucose transport effector system. GLUT4 content in adipocytes is profoundly depleted in ∼50% of GDM patients, whereas all patients are found to exhibit a novel abnormality in GLUT4 subcellular distribution. This latter defect is characterized by accumulation of GLUT4 in membranes cofractionating with plasma membranes and high-density microsomes in basal cells and absence of translocation in response to insulin. The data suggest that abnormalities in cellular traffic or targeting relegate GLUT4 to a membrane compartment from which insulin cannot recruit transporters to the cell surface and have important implications regarding skeletal muscle insulin resistance in GDM and NIDDM.</jats:p
