332 research outputs found
Efficiency of tandem solar cell systems as function of temperature and solar energy concentration ratio
The results of a comprehensive theoretical analysis of tandem photovoltaic solar cells as a function of temperature and solar concentration ratio are presented. The overall efficiencies of tandem cell stacks consisting of as many as 24 cells having gaps in the 0.7 to 3.6 eV range were calculated for temperatures of 200, 300, 400, and 500 K and for illumination by an AMO solar spectrum having concentration ratios of 1, 100, 500, and 1000 suns. For ideal diodes (A = B = 1), the calculations show that the optimized overall efficiency has a limiting value eta sub opt of approximately 70 percent for T = 200 K and C = 1000; for T = 300 K and C = 1000, this limiting efficiency approaches 60 percent
Computational Simulations of the 10-MW TP3 Arc-Jet Facility Flow
This paper reports computational simulations and analysis in support of calibration tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using stagnation calorimeters and two different blunted wedge models with calibration plates at a wide range of conditions in the NASA Ames 10-megawatt TP3 (Test Position 3) facility. Data were obtained using four different conical nozzles with the same test configuration in which the models were placed in a free jet downstream of the nozzle. Experimental surveys of arc-jet test flow with pitot and null-point heat flux probes were also performed at several arc-heater conditions, providing assessment of the flow uniformity and valuable data for the flow characterization. The present analysis comprises computational fluid dynamics simulations of the nonequilibrium flowfield in the facility nozzle and test box, including the models tested, and comparisons with the experimental measurements. These computational simulations provide estimates of the arc-jet test environment parameters that are not measured but are needed to evaluate the performance of thermal protection system materials, along with further valuable insights into the arc-jet testing environment. Simulation results are used to estimate centerline total enthalpy, surface shear, boundary layer thickness, and boundary layer edge Mach number and to verify that specific test requirements from the Orion program are met
Consolidating NASA's Arc Jets
The paper describes the consolidation of NASA's high powered arc-jet testing at a single location. The existing plasma arc-jet wind tunnels located at the Johnson Space Center were relocated to Ames Research Center while maintaining NASA's technical capability to ground-test thermal protection system materials under simulated atmospheric entry convective heating. The testing conditions at JSC were reproduced and successfully demonstrated at ARC through close collaboration between the two centers. New equipment was installed at Ames to provide test gases of pure nitrogen mixed with pure oxygen, and for future nitrogen-carbon dioxide mixtures. A new control system was custom designed, installed and tested. Tests demonstrated the capability of the 10 MW constricted-segmented arc heater at Ames meets the requirements of the major customer, NASA's Orion program. Solutions from an advanced computational fluid dynamics code were used to aid in characterizing the properties of the plasma stream and the surface environment on the calorimeters in the supersonic flow stream produced by the arc heater
- …