16 research outputs found

    Neural network based estimation of torque in induction motors for real-time applications

    No full text
    Induction motors are largely used in several industry sectors. The selection of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this article is to use artificial neural networks for torque estimation with the purpose of best selecting the induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Since proposed approach estimates the torque behavior from the transient to the steady state, one of its main contributions is the potential to also be implemented in control schemes for real-time applications. Simulation results are also presented to validate the proposed approach

    Uma abordagem neural para estimação de conjugado em motores de indução

    No full text
    Os motores de indução são utilizados nos mais diversos setores industriais. Entretanto, a seleção de um motor de indução em determinada aplicação é imprecisa nos casos em que não há conhecimento do comportamento da carga que está acoplada ao eixo do motor. A proposta deste trabalho é fornecer uma ferramenta alternativa aos métodos tradicionais de identificação usando as redes neurais artificiais. O potencial desta proposta está em sua facilidade de implementação em hardware, tendo em vista que a metodologia não necessita de sensores de torque, assim como não requer alto poder computacional. Resultados de simulação são apresentados para validar a proposta.Induction motors are widely used in several industrial sectors. However, the selection of induction motors is often inaccurate because, in most cases, the load behavior in the shaft is completely unknown. The proposal of this paper is to use artificial neural networks as a tool for dimensioning induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. The potential of this approach is the simple hardware implementation since the methodology does not require torque sensor nor powerful computational processors. Simulation results are also presented to validate the proposed approach.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    An alternative approach to solve convergence problems in the backpropagation algorithm

    No full text
    The multilayer perceptron network has become one of the most used in the solution of a wide variety of problems. The training process is based on the supervised method where the inputs are presented to the neural network and the output is compared with a desired value. However, the algorithm presents convergence problems when the desired output of the network has small slope in the discrete time samples or the output is a quasi-constant value. The proposal of this paper is presenting an alternative approach to solve this convergence problem with a pre-conditioning method of the desired output data set before the training process and a post-conditioning when the generalization results are obtained. Simulations results are presented in order to validate the proposed approach

    Estimation of electrical machine speed using sensorless technology and neural networks

    No full text
    The use of sensorless technologies is an increasing tendency on industrial drivers for electrical machines. The estimation of electrical and mechanical parameters involved with the electrical machine control is used very frequently in order to avoid measurement of all variables related to this process. The cost reduction may also be considered in industrial drivers, besides the increasing robustness of the system, as an advantage of the use of sensorless technologies. This work proposes the use of a recurrent artificial neural network to estimate the speed of induction motor for sensorless control schemes using one single current sensor. Simulation and experimental results are presented to validate the proposed approach. ©2008 IEEE

    Neural Network-Based Approach for Identification of the Harmonic Content of a Nonlinear Load in a Single-Phase System

    No full text
    In this paper an alternative method based on artificial neural networks is presented to determine harmonic components in the load current of a single-phase electric power system with nonlinear loads, whose parameters can vary so much in reason of the loads characteristic behaviors as because of the human intervention. The first six components in the load current are determined using the information contained in the time-varying waveforms. The effectiveness of this method is verified by using it in a single-phase active power filter with selective compensation of the current drained by an AC controller. The proposed method is compared with the fast Fourier transform

    Load torque estimation in induction motors using artificial neural networks

    No full text
    The induction motors are largely used in several industry sectors. The dimensioning of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this paper is to use artificial neural networks as tool for dimensioning of induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Simulation results are also presented to validate the proposed approach

    A neural networks-based method for single-phase harmonic content identification

    No full text
    A neural method is presented in this paper to identify the harmonic components of an ac controller. The components are identified by analyzing the single-phase current waveform. The method effectiveness is verified by applying it to an active power filter (APF) model dedicated to the selective harmonic compensation. Simulation results using theoretical and experimental data are presented to validate the proposed approach. © 2008 IEEE

    Harmonic content identification based on neural method for single phase power systems

    No full text
    An alternative method is presented in this paper to identify the harmonic components of non-linear loads in single phase power systems based on artificial neural networks. The components are identified by analyzing the single phase current waveform in time domain in half-cycle of the ac voltage source. The proposed method is compared to the fast Fourier transform. Simulation and experimental results are presented to validate the proposed approach
    corecore