36 research outputs found

    Boron Fullerenes: A First-Principles Study

    Get PDF
    A family of unusually stable boron cages was identified and examined using first-principles local density functional method. The structure of the fullerenes is similar to that of the B12 icosahedron and consists of six crossing double-rings. The energetically most stable fullerene is made up of 180 boron atoms. A connection between the fullerene family and its precursors, boron sheets, is made. We show that the most stable boron sheets are not necessarily precursors of very stable boron cages. Our finding is a step forward in the understanding of the structure of the recently produced boron nanotubes.Comment: 10 pages, 4 figures, 1 tabl

    PubChem and ChEMBL beyond Lipinski

    No full text

    The transition state for formation of the peptide bond in the ribosome

    No full text
    Using quantum mechanics and exploiting known crystallographic coordinates of tRNA substrate located in the ribosome peptidyl transferase center around the 2-fold axis, we have investigated the mechanism for peptide-bond formation. The calculation is based on a choice of 50 atoms assumed to be important in the mechanism. We used density functional theory to optimize the geometry and energy of the transition state (TS) for peptide-bond formation. The TS is formed simultaneously with the rotatory motion enabling the translocation of the A-site tRNA 3′ end into the P site, and we estimated the magnitude of rotation angle between the A-site starting position and the place at which the TS occurs. The calculated TS activation energy, E(a), is 35.5 kcal (1 kcal = 4.18 kJ)/mol, and the increase in hydrogen bonding between the rotating A-site tRNA and ribosome nucleotides as the TS forms appears to stabilize it to a value qualitatively estimated to be ≈18 kcal/mol. The optimized geometry corresponds to a structure in which the peptide bond is being formed as other bonds are being broken, in such a manner as to release the P-site tRNA so that it may exit as a free molecule and be replaced by the translocating A-site tRNA. At TS formation the 2′ OH group of the P-site tRNA A76 forms a hydrogen bond with the oxygen atom of the carboxyl group of the amino acid attached to the A-site tRNA, which may be indicative of its catalytic role, consistent with recent biochemical experiments

    Crystalline boron nanowires

    No full text
    Ideal nanowire interconnects for nanoelectronics will be refractory, covalently bonded, and highly conductive, irrespective of crystallographic orientation. Theoretical studies suggest that boron nanotubes should be stable and exhibit higher electrical conductivities than those of carbon nanotubes. We describe CVD growth of elemental boron nanowires, which are found to be dense nanowhiskers rather than nanotubes. Conductivity measurements establish that they are semiconducting, with electrical properties consistent with those of elemental boron. High conductivities should be achievable through doping
    corecore