2,384 research outputs found
On a periodic solution of the central differential equation in the relativity theory of gravitation
Periodic solution of central differential equation in relativity theory of gravitatio
Tunable n-path notch filters for blocker suppression: modeling and verification
N-path switched-RC circuits can realize filters with very high linearity and compression point while they are tunable by a clock frequency. In this paper, both differential and single-ended N-path notch filters are modeled and analyzed. Closed-form equations provide design equations for the main filtering characteristics and nonidealities such as: harmonic mixing, switch resistance, mismatch and phase imbalance, clock rise and fall times, noise, and insertion loss. Both an eight-path single-ended and differential notch filter are implemented in 65-nm CMOS technology. The notch center frequency, which is determined by the switching frequency, is tunable from 0.1 to 1.2 GHz. In a 50- environment, the N-path filters provide power matching in the passband with an insertion loss of 1.4–2.8 dB. The rejection at the notch frequency is 21–24 dB,P1 db> + 2 dBm, and IIP3 > + 17 dBm
Integration of the relativistic equations of motion of an artificial earth satellite
Perturbation method for relativistic motion analysis on earth orbiting spacecraf
Solitonic State in Microscopic Dynamic Failures
Onset of permanent deformation in crystalline materials under a sharp
indenter tip is accompanied by nucleation and propagation of defects. By
measuring the spatio-temporal strain field nearthe indenter tip during
indentation tests, we demonstrate that the dynamic strain history at the moment
of a displacement burst carries characteristics of formation and interaction of
local excitations, or solitons. We show that dynamic propagation of multiple
solitons is followed by a short time interval where the propagating fronts can
accelerate suddenly. As a result of such abrupt local accelerations, duration
of the fast-slip phase of a failure event is shortened. Our results show that
formation and annihilation of solitons mediate the microscopic fast weakening
phase, during which extreme acceleration and collision of solitons lead to
non-Newtonian behavior and Lorentz contraction, i.e., shortening of solitons
characteristic length. The results open new horizons for understanding dynamic
material response during failure and, more generally, complexity of earthquake
sources
A new efficient hyperelastic finite element model for graphene and its application to carbon nanotubes and nanocones
A new hyperelastic material model is proposed for graphene-based structures,
such as graphene, carbon nanotubes (CNTs) and carbon nanocones (CNC). The
proposed model is based on a set of invariants obtained from the right surface
Cauchy-Green strain tensor and a structural tensor. The model is fully
nonlinear and can simulate buckling and postbuckling behavior. It is calibrated
from existing quantum data. It is implemented within a rotation-free
isogeometric shell formulation. The speedup of the model is 1.5 relative to the
finite element model of Ghaffari et al. [1], which is based on the logarithmic
strain formulation of Kumar and Parks [2]. The material behavior is verified by
testing uniaxial tension and pure shear. The performance of the material model
is illustrated by several numerical examples. The examples include bending,
twisting, and wall contact of CNTs and CNCs. The wall contact is modeled with a
coarse grained contact model based on the Lennard-Jones potential. The buckling
and post-buckling behavior is captured in the examples. The results are
compared with reference results from the literature and there is good
agreement
Generalized second law of thermodynamics in modified FRW cosmology with corrected entropy-area relation
Using the corrected entropy-area relation motivated by the loop quantum
gravity, we investigate the validity of the generalized second law of
thermodynamics in the framework of modified FRW cosmology. We consider a
non-flat universe filled with an interacting viscous dark energy with dark
matter and radiation. The boundary of the universe is assumed to be the
dynamical apparent horizon. We find out that the generalized second law is
always satisfied throughout the history of the universe for any spatial
curvature regardless of the dark energy model.Comment: 9 pages, accepted for publication in Europhysics Letter
The extended uncertainty principle inspires the R\'{e}nyi entropy
We use the extended uncertainty principle (EUP) in order to obtain the
R\'{e}nyi entropy for a black hole (BH). The result implies that the
non-extensivity parameter, appeared in the R\'{e}nyi entropy formalism, may be
evaluated from the considerations which lead to EUP. It is also shown that, for
excited BHs, the R\'{e}nyi entropy is a function of the BH principal quantum
number, i.e. the BH quantum excited state. Temperature and heat capacity of the
excited BHs are also investigated addressing two phases while only one of them
can be stable. At this situation, whereas entropy is vanished, temperature may
take a non-zero positive minimum value, depending on the value of the
non-extensivity parameter. The evaporation time of excited BH has also been
studied
- …
