113 research outputs found

    On the Theory of Magnetotransport in a Periodically Modulated Two-Dimensional Electron Gas

    Full text link
    A semiclassical theory based on the Boltzmann transport equation for a two-dimensional electron gas modulated along one direction with weak electrostatic or magnetic modulations is proposed. It is shown that oscillations of the magnetoresistivity ρ \rho_{||} corresponding to the current driven along the modulation lines observed at moderately low magnetic fields, can be explained as classical geometric resonances reflecting the commensurability of the period of spatial modulations and the cyclotron radius of electrons.Comment: 5 pages, 1 figure, text and 1 figure adde

    Anisotropic scattering and quantum magnetoresistivities of a periodically modulated 2D electron gas

    Full text link
    We calculate the longitudinal conductivities of a two-dimensional noninteracting electron gas in a uniform magnetic field and a lateral electric or magnetic periodic modulation in one spatial direction, in the quantum regime. We consider the effects of the electron-impurity scattering anisotropy through the vertex corrections on the Kubo formula, which are calculated with the Bethe-Salpeter equation, in the self-consistent Born approximation. We find that due to the scattering anisotropy the band conductivity increases, and the scattering conductivities decrease and become anisotropic. Our results are in qualitative agreement with recent experiments.Comment: 19 pages, 8 figures, Revtex, to appear in Phys. Rev.

    Guiding center picture of magnetoresistance oscillations in rectangular superlattices

    Full text link
    We calculate the magneto-resistivities of a two-dimensional electron gas subjected to a lateral superlattice (LSL) of rectangular symmetry within the guiding-center picture, which approximates the classical electron motion as a rapid cyclotron motion around a slowly drifting guiding center. We explicitly evaluate the velocity auto-correlation function along the trajectories of the guiding centers, which are equipotentials of a magnetic-field dependent effective LSL potential. The existence of closed equipotentials may lead to a suppression of the commensurability oscillations, if the mean free path and the LSL modulation potential are large enough. We present numerical and analytical results for this suppression, which allow, in contrast to previous quantum arguments, a classical explanation of similar suppression effects observed experimentally on square-symmetric LSL. Furthermore, for rectangular LSLs of lower symmetry they lead us to predict a strongly anisotropic resistance tensor, with high- and low-resistance directions which can be interchanged by tuning the externally applied magnetic field.Comment: 12 pages, 9 figure

    Magnetoresistance of a two-dimensional electron gas with spatially periodic lateral modulations: Exact consequences of Boltzmann's equation

    Full text link
    On the basis of Boltzmann's equation, and including anisotropic scattering in the collision operator, we investigate the effect of one-dimensional superlattices on two-dimensional electron systems. In addition to superlattices defined by static electric and magnetic fields, we consider mobility superlattices describing a spatially modulated density of scattering centers. We prove that magnetic and electric superlattices in xx-direction affect only the resistivity component ρxx\rho_{xx} if the mobility is homogeneous, whereas a mobility lattice in xx-direction in the absence of electric and magnetic modulations affects only ρyy\rho_{yy}. Solving Boltzmann's equation numerically, we calculate the positive magnetoresistance in weak magnetic fields and the Weiss oscillations in stronger fields within a unified approach.Comment: submitted to PR

    Quantum analog of channeled electron trajectories in periodic magnetic and electric fields

    Full text link
    We calculate the quantum states corresponding to the drifting and channeled classical orbits in a two-dimensional electron gas (2DEG) with strong magnetic and electric modulations along one spatial direction, xx. The channeled states carry high, concentrated currents along the yy axis, and are confined in an effective potential well. The quantum and the classical states are compared.Comment: 8 pages with 4 included ps figures, contribution to "SemiMag 13" Nijmegen, August 1998, to appear in Physica

    Hall field induced magnetoresistance oscillations of a two-dimensional electron system

    Full text link
    We develop a model of the nonlinear response to a DC electrical current of a two dimensional electron system(2DES) placed on a magnetic field. Based on the exact solution of the Schroedinger equation in arbitrarily strong electric and magnetic fields, and separating the relative and guiding center coordinates, a Kubo-like formula for the current is worked out as a response to the impurity scattering. Self-consistent expressions determine the longitudinal and Hall components of the electric field in terms of the DC current. The differential resistivity displays strong Hall field-induced oscillations, in agreement with the main features of the phenomenon observed in recent experiments.Comment: 11 pages, 5 figure

    Light scattering from a periodically modulated two dimensional electron gas with partially filled Landau levels

    Get PDF
    We study light scattering from a periodically modulated two dimensional electron gas in a perpendicular magnetic field. If a subband is partially filled, the imaginary part of the dielectric function as a function of frequency contains additional discontinuities to the case of completely filled subbands. The positions of the discontinuities may be determined from the partial filling factor and the height of the discontinuity can be directly related to the modulation potential. The light scattering cross section contains a new peak which is absent for integer filling.Comment: RevTex, 4 figures. To appear in Phys. Rev. B as a brief repor

    Planar cyclotron motion in unidirectional superlattices defined by strong magnetic and electric fields: Traces of classical orbits in the energy spectrum

    Full text link
    We compare the quantum and the classical description of the two-dimensional motion of electrons subjected to a perpendicular magnetic field and a one-dimensional lateral superlattice defined by spatially periodic magnetic and electric fields of large amplitudes. We explain in detail the complicated energy spectra, consisting of superimposed branches of strong and of weak dispersion, by the correspondence between the respective eigenstates and the ``channeled'' and ``drifting'' orbits of the classical description.Comment: 11 pages, 11 figures, to appear in Physical Review

    Manifestation of the Hofstadter butterfly in far-infrared absorption

    Full text link
    The far-infrared absorption of a two-dimensional electron gas with a square-lattice modulation in a perpendicular constant magnetic field is calculated self-consistently within the Hartree approximation. For strong modulation and short period we obtain intra- and intersubband magnetoplasmon modes reflecting the subbands of the Hofstadter butterfly in two or more Landau bands. The character of the absorption and the correlation of the peaks to the number of flux quanta through each unit cell of the periodic potential depends strongly on the location of the chemical potential with respect to the subbands, or what is the same, on the density of electrons in the system.Comment: RevTeX file + 4 postscript figures, to be published Phys. Rev. B Rapid Com
    corecore