333 research outputs found

    Robustness of spatial Penning trap modes against environment-assisted entanglement

    Full text link
    The separability of the spatial modes of a charged particle in a Penning trap in the presence of an environment is studied by means of the positive partial transpose (PPT) criterion. Assuming a weak Markovian environment, described by linear Lindblad operators, our results strongly suggest that the environmental coupling of the axial and cyclotron degrees of freedom does not lead to entanglement at experimentally realistic temperatures. We therefore argue that, apart from unavoidable decoherence, the presence of such an environment does not alter the effectiveness of recently suggested quantum information protocols in Penning traps, which are based on the combination of a spatial mode with the spin of the particle.Comment: 11 pages, 2 figure

    Non-Markovian Dynamics in Ultracold Rydberg Aggregates

    Get PDF
    We propose a setup of an open quantum system in which the environment can be tuned such that either Markovian or non-Markovian system dynamics can be achieved. The implementation uses ultracold Rydberg atoms, relying on their strong long-range interactions. Our suggestion extends the features available for quantum simulators of molecular systems employing Rydberg aggregates and presents a new test bench for fundamental studies of the classification of system-environment interactions and the resulting system dynamics in open quantum systems.Comment: 13 pages, 4 figure

    Quantum simulation of energy transport with embedded Rydberg aggregates

    Full text link
    We show that an array of ultracold Rydberg atoms embedded in a laser driven background gas can serve as an aggregate for simulating exciton dynamics and energy transport with a controlled environment. Spatial disorder and decoherence introduced by the interaction with the background gas atoms can be controlled by the laser parameters. This allows for an almost ideal realization of a Haken-Reineker-Strobl type model for energy transport. Physics can be monitored using the same mechanism that provides control over the environment. The degree of decoherence is traced back to information gained on the excitation location through the monitoring, turning the setup into an experimentally accessible model system for studying the effects of quantum measurements on the dynamics of a many-body quantum system.Comment: 5 pages, 4 figures, 3 pages supp. in

    Source of entangled atom pairs on demand, using the Rydberg blockade

    Full text link
    Two ultracold atom clouds, each separately in a dipole-blockade regime, realize a source of entangled atom pairs that can be ejected on demand. Entanglement generation and ejection is due to resonant dipole-dipole interactions, while van-der-Waals interactions are predominantly responsible for the blockade that ensures the ejection of a single atom per cloud. A source of entangled atoms using these effects can operate with a 10 kHz repetition rate producing ejected atoms with velocities of about 0.5 m/s.Comment: 7 pages, 4 figure

    Dipole-dipole induced global motion of Rydberg-dressed atom clouds

    Full text link
    We consider two clouds of ground state alkali atoms in two distinct hyperfine ground states. Each level is far off-resonantly coupled to a Rydberg state, which leads to dressed ground states with a weak admixture of the Rydberg state properties. Due to this admixture, for a proper choice of the Rydberg states, the atoms experience resonant dipole-dipole interactions that induce mechanical forces acting on all atoms within both clouds. This behavior is in contrast to the dynamics predicted for bare dipole-dipole interactions between Rydberg superatoms, where only a single atom per cloud is subject to dipole-dipole induced motion [Phys. Rev. A {\bf 88} 012716 (2013)].Comment: 15 pages, 2 figure

    Optical absorption of non-interacting tight-binding electrons in a Peierls-distorted chain at half band-filling

    Full text link
    In this first of three articles on the optical absorption of electrons in half-filled Peierls-distorted chains we present analytical results for non-interacting tight-binding electrons. We carefully derive explicit expressions for the current operator, the dipole transition matrix elements, and the optical absorption for electrons with a cosine dispersion relation of band width WW and dimerization parameter δ\delta. New correction (``η\eta''-)terms to the current operator are identified. A broad band-to-band transition is found in the frequency range Wδ<ω<WW\delta < \omega < W whose shape is determined by the joint density of states for the upper and lower Peierls subbands and the strong momentum dependence of the transition matrix elements.Comment: 17 pages REVTEX 3.0, 2 postscript figures; hardcopy versions before May 96 are obsolete; accepted for publication in The Philosophical Magazine

    Fano resonances in quantum transport with vibrations

    Get PDF
    Quantum-mechanical scattering involving continuum states coupled to a scatterer with a discrete spectrum gives rise to Fano resonances. Here we consider scatterers that possess internal vibrational degrees of freedom in addition to discrete states. Entanglement between the scattered excitation and vibrational modes complicates analytical and numerical calculations considerably. For the example of one-dimensional scattering we develop a multichannel quantum scattering approach which can determine reflection and transmission probabilities in the presence of vibrations. Application to a linear chain coupled to a control unit containing vibrating sites shows that vibrational degrees of freedom can have a profound effect on quantum transport. For suitable parameters, spectral regions which are opaque in the static case can be rendered transparent when vibrations are included. The formalism is general enough to be applicable to a variety of platforms for quantum transport including molecular aggregates, cold atom chains, quantum-dot arrays and molecular wires based on conjugated polymers

    Surface superconducting states in a polycrystalline MgB2_{2} sample

    Full text link
    We report results of dc magnetic and ac linear low-frequency study of a polycrystalline MgB2_2 sample. AC susceptibility measurements at low frequencies, performed under dc fields parallel to the sample surface, provide a clear evidence for surface superconducting states in MgB2_2.Comment: 4 pages and 5 figure

    Monitoring of downloads of Belgorod State University (Russia) scientists' publications by scientists from other countries

    Get PDF
    The article presents a review on the functioning of the ResearchGate network and the growth of its popularity both from the literary data and from the experiments in the Google Scholar search engine. It describes a unique weekly monitoring experiments of downloads of Belgorod State University (Russia) scientists' publications by scientists from other countries (starting on 11.01.2015 through 20.12.2015), and it is shown that scientists from the United States (about 10,000 downloads in 2015) and China (about 6,000 downloads in 2015) are most interested in these publication
    corecore