597 research outputs found

    A Tuneable Few Electron Triple Quantum Dot

    Full text link
    In this paper we report on a tuneable few electron lateral triple quantum dot design. The quantum dot potentials are arranged in series. The device is aimed at studies of triple quantum dot properties where knowing the exact number of electrons is important as well as quantum information applications involving electron spin qubits. We demonstrate tuning strategies for achieving required resonant conditions such as quadruple points where all three quantum dots are on resonance. We find that in such a device resonant conditions at specific configurations are accompanied by novel charge transfer behaviour.Comment: 11 pages, 4 figure

    Coherent Transport Through a Quadruple Point in a Few Electron Triple Dot

    Full text link
    A few electron double electrostatic lateral quantum dot can be transformed into a few electron triple quantum dot by applying a different combination of gate voltages. Quadruple points have been achieved at which all three dots are simultaneously on resonance. At these special points in the stability diagram four occupation configurations are possible. Both charge detection and transport experiments have been performed on this device. In this short paper we present data and confirm that transport is coherent by observing a Pi phase shift in magneto-conductance oscillations as one passes through the quadruple point.Comment: To be published in ICPS Conf. Proceedings 200

    Topological Hunds rules and the electronic properties of a triple lateral quantum dot molecule

    Full text link
    We analyze theoretically and experimentally the electronic structure and charging diagram of three coupled lateral quantum dots filled with electrons. Using the Hubbard model and real-space exact diagonalization techniques we show that the electronic properties of this artificial molecule can be understood using a set of topological Hunds rules. These rules relate the multi-electron energy levels to spin and the inter-dot tunneling tt, and control charging energies. We map out the charging diagram for up to N=6 electrons and predict a spin-polarized phase for two holes. The theoretical charging diagram is compared with the measured charging diagram of the gated triple-dot device.Comment: 31 pages, 7 figures, accepted to March 15, 2007 issue of Phys. Rev. B, vol. 7

    Theory of electronic transport through a triple quantum dot in the presence of magnetic field

    Full text link
    Theory of electronic transport through a triangular triple quantum dot subject to a perpendicular magnetic field is developed using a tight binding model. We show that magnetic field allows to engineer degeneracies in the triple quantum dot energy spectrum. The degeneracies lead to zero electronic transmission and sharp dips in the current whenever a pair of degenerate states lies between the chemical potential of the two leads. These dips can occur with a periodicity of one flux quantum if only two levels contribute to the current or with half flux quantum if the three levels of the triple dot contribute. The effect of strong bias voltage and different lead-to-dot connections on Aharonov-Bohm oscillations in the conductance is also discussed

    Bipolar spin blockade and coherent state superpositions in a triple quantum dot

    Full text link
    Spin qubits based on interacting spins in double quantum dots have been successfully demonstrated. Readout of the qubit state involves a conversion of spin to charge information, universally achieved by taking advantage of a spin blockade phenomenon resulting from Pauli's exclusion principle. The archetypal spin blockade transport signature in double quantum dots takes the form of a rectified current. Currently more complex spin qubit circuits including triple quantum dots are being developed. Here we show both experimentally and theoretically (a) that in a linear triple quantum dot circuit, the spin blockade becomes bipolar with current strongly suppressed in both bias directions and (b) that a new quantum coherent mechanism becomes relevant. Within this mechanism charge is transferred non-intuitively via coherent states from one end of the linear triple dot circuit to the other without involving the centre site. Our results have implications in future complex nano-spintronic circuits.Comment: 21 pages, 7 figure

    Single-molecule study for a graphene-based nano-position sensor

    Get PDF
    In this study we lay the groundwork for a graphene-based fundamental ruler at the nanoscale. It relies on the efficient energy-transfer mechanism between single quantum emitters and low-doped graphene monolayers. Our experiments, conducted with dibenzoterrylene (DBT) molecules, allow going beyond ensemble analysis due to the emitter photo-stability and brightness. A quantitative characterization of the fluorescence decay-rate modification is presented and compared to a simple model, showing agreement with the d4d^{-4} dependence, a genuine manifestation of a dipole interacting with a 2D material. With DBT molecules, we can estimate a potential uncertainty in position measurements as low as 5nm in the range below 30nm

    Quantum interference and phonon-mediated back-action in lateral quantum dot circuits

    Full text link
    Spin qubits have been successfully realized in electrostatically defined, lateral few-electron quantum dot circuits. Qubit readout typically involves spin to charge information conversion, followed by a charge measurement made using a nearby biased quantum point contact. It is critical to understand the back-action disturbances resulting from such a measurement approach. Previous studies have indicated that quantum point contact detectors emit phonons which are then absorbed by nearby qubits. We report here the observation of a pronounced back-action effect in multiple dot circuits where the absorption of detector-generated phonons is strongly modified by a quantum interference effect, and show that the phenomenon is well described by a theory incorporating both the quantum point contact and coherent phonon absorption. Our combined experimental and theoretical results suggest strategies to suppress back-action during the qubit readout procedure.Comment: 25 pages, 8 figure

    Time Resolved Control of Electron Tunnelling Times and Single-shot Spin Readout in a Quantum Dot

    Full text link
    We are pursuing a capability to perform time resolved manipulations of single spins in quantum dot circuits involving more than two quantum dots. In this paper, we demonstrate full counting statistics as well as averaging techniques we use to calibrate the tunnel barriers. We make use of this to implement the Delft protocol for single shot single spin readout in a device designed to form a triple quantum dot potential. We are able to tune the tunnelling times over around three orders of magnitude. We obtain a spin relaxation time of 300 microseconds at 10T.Comment: Submitted to EP2DS 2009 Conference Proceeding

    An electrostatically defined serial triple quantum dot charged with few electrons

    Full text link
    A serial triple quantum dot (TQD) electrostatically defined in a GaAs/AlGaAs heterostructure is characterized by using a nearby quantum point contact as charge detector. Ground state stability diagrams demonstrate control in the regime of few electrons charging the TQD. An electrostatic model is developed to determine the ground state charge configurations of the TQD. Numerical calculations are compared with experimental results. In addition, the tunneling conductance through all three quantum dots in series is studied. Quantum cellular automata processes are identified, which are where charge reconfiguration between two dots occurs in response to the addition of an electron in the third dot.Comment: 12 pages, 9 figure
    corecore