1,016 research outputs found

    Moving towards 100% renewable electricity in Europe & North Africa by 2050

    Get PDF
    In spring 2010, European and international climate experts at PwC, the European Climate Forum, the Potsdam Institute for Climate Impact Research and the International Institute for Applied System Analysis published 100% Renewable Electricity - A roadmap to 2050 for Europe and North Africa. The report examined the potential for powering Europe and North Africa with renewable electricity exclusively by 2050. It set out a series of financial, market, infrastructure and government policy steps that would need to occur if such a "what if" vision was to be achieved. Now, a year on, this latest report provides a complementary analysis to the original roadmap. PwC, the Potsdam Institute for Climate Impact Research and the International Institute for Applied System Analysis, look at whether the vision of 100% renewable electricity has moved closer or further away as a result of current and recent developments over the last 12 months. The report, intended to support the wider debate in this area, examines five areas that are most critical to achieving progress and, through the lens of these five areas, looks at the impact of recent and current events

    A Study of Quantum Error Correction by Geometric Algebra and Liquid-State NMR Spectroscopy

    Get PDF
    Quantum error correcting codes enable the information contained in a quantum state to be protected from decoherence due to external perturbations. Applied to NMR, quantum coding does not alter normal relaxation, but rather converts the state of a ``data'' spin into multiple quantum coherences involving additional ancilla spins. These multiple quantum coherences relax at differing rates, thus permitting the original state of the data to be approximately reconstructed by mixing them together in an appropriate fashion. This paper describes the operation of a simple, three-bit quantum code in the product operator formalism, and uses geometric algebra methods to obtain the error-corrected decay curve in the presence of arbitrary correlations in the external random fields. These predictions are confirmed in both the totally correlated and uncorrelated cases by liquid-state NMR experiments on 13C-labeled alanine, using gradient-diffusion methods to implement these idealized decoherence models. Quantum error correction in weakly polarized systems requires that the ancilla spins be prepared in a pseudo-pure state relative to the data spin, which entails a loss of signal that exceeds any potential gain through error correction. Nevertheless, this study shows that quantum coding can be used to validate theoretical decoherence mechanisms, and to provide detailed information on correlations in the underlying NMR relaxation dynamics.Comment: 33 pages plus 6 figures, LaTeX article class with amsmath & graphicx package

    On the terms violating the custodial symmetry in multi-Higgs-doublet models

    Get PDF
    We prove that a generic multi-Higgs-doublet model (NHDM) generally must contain terms in the potential that violate the custodial symmetry. This is done by showing that the O(4) violating terms of the NHDM potential cannot be excluded by imposing a symmetry on the NHDM Lagrangian. Hence we expect higher-order corrections to necessarily introduce such terms. We also note, in the case of custodially symmetric Higgs-quark couplings, that vacuum alignment will lead to up-down mass degeneration; this is not true if the vacua are not aligned.Comment: 16 pages, 1 figure. Title and abstract are modified, conclusions remain the same. Section on Yukawa couplings is extended. Published versio

    Invisible Higgs and Scalar Dark Matter

    Full text link
    In this proceeding, we show that when we combined WMAP and the most recent results of XENON100, the invisible width of the Higgs to scalar dark matter is negligible(<10%), except in a small region with very light dark matter (< 10 GeV) not yet excluded by XENON100 or around 60 GeV where the ratio can reach 50% to 60%. The new results released by the Higgs searches of ATLAS and CMS set very strong limits on the elastic scattering cross section.Comment: 4 pages, 2 figures, proceeding TAUP2011 References adde

    The Minimal Phantom Sector of the Standard Model: Higgs Phenomenology and Dirac Leptogenesis

    Get PDF
    We propose the minimal, lepton-number conserving, SU(3)xSU(2)xU(1) gauge-singlet, or phantom, extension of the Standard Model. The extension is natural in the sense that all couplings are of O(1) or forbidden due to a phantom sector global U(1)_D symmetry, and basically imitates the standard Majorana see-saw mechanism. Spontaneous breaking of the U(1)_D symmetry triggers consistent electroweak gauge symmetry breaking only if it occurs at a scale compatible with small Dirac neutrino masses and baryogenesis through Dirac leptogenesis. Dirac leptogenesis proceeds through the usual out-of-equilibrium decay scenario, leading to left and right-handed neutrino asymmetries that do not fully equilibrate after they are produced. The model contains two physical Higgs bosons and a massless Goldstone boson. The existence of the Goldstone boson suppresses the Higgs to bb branching ratio and instead the Higgs bosons will mainly decay to invisible Goldstone and/or to visible vector boson pairs. In a representative scenario, we estimate that with 30 fb^-1 integrated luminosity, the LHC could discover this invisibly decaying Higgs, with mass ~120 GeV. At the same time a significantly heavier, partner Higgs boson with mass ~210 GeV could be found through its vector boson decays. Electroweak constraints as well as astrophysical and cosmological implications are analysed and discussed.Comment: 21 pages, 4 figures. Corrected typos and added references. To appear in JHE

    The Inert Doublet Model and Inelastic Dark Matter

    Full text link
    The annual modulation observed by DAMA/NaI and DAMA/Libra may be interpreted in terms of elastic or inelastic scattering of dark matter particles. In this paper we confront these two scenarios within the framework of a very simple extension of the Standard Model, the Inert Doublet Model (IDM). In this model the dark matter candidate is a scalar, the lightest component of an extra Higgs doublet. We first revisit the case for the elastic scattering of a light scalar WIMP, M_DM~10 GeV, a scenario which requires that a fraction of events in DAMA are channelled. Second we consider the possibility of inelastic Dark Matter (iDM). This option is technically natural in the IDM, in the sense that the mass splitting between the lightest and next-to-lightest neutral scalars may be protected by a Peccei-Quinn (PQ) symmetry. We show that candidates with a mass M_DM between ~535 GeV and ~50 TeV may reproduce the DAMA data and have a cosmic abundance in agreement with WMAP. This range may be extended to candidates as light as ~50 GeV if we exploit the possibility that the approximate PQ symmetry is effectively conserved and that a primordial asymmetry in the dark sector may survive until freeze-out.Comment: 16 pages, 7 figures. v2: minor changes and discussion on the embedding in SO(10) added. v3: matches the published version in JCA

    Adaptation in integrated assessment modeling: where do we stand?

    Get PDF
    Adaptation is an important element on the climate change policy agenda. Integrated assessment models, which are key tools to assess climate change policies, have begun to address adaptation, either by including it implicitly in damage cost estimates, or by making it an explicit control variable. We analyze how modelers have chosen to describe adaptation within an integrated framework, and suggest many ways they could improve the treatment of adaptation by considering more of its bottom-up characteristics. Until this happens, we suggest, models may be too optimistic about the net benefits adaptation can provide, and therefore may underestimate the amount of mitigation they judge to be socially optimal. Under some conditions, better modeling of adaptation costs and benefits could have important implications for defining mitigation targets. © Springer Science+Business Media B.V. 2009

    A Seesaw Mechanism in the Higgs Sector

    Full text link
    In this letter we revisit the seesaw Higgs mechanism. We show how a seesaw mechanism in a two Higgs doublets model can trigger the electroweak symmetry breaking if at least one of the eigenvalues of the squared mass matrix is negative. We then consider two special cases of interest. In the decoupling scenario, there is only one scalar degree of freedom in the low energy regime. In the degenerate scenario, all five degrees of freedom are in the low energy regime and will lead to observables effects at the LHC. Furthermore, in that scenario, it is possible to impose a discrete symmetry between the doublets that makes the extra neutral degrees of freedom stable. These are thus viable dark matter candidates. We find an interesting relation between the electroweak symmetry breaking mechanism and dark matter.Comment: 10 page

    Availability of central α4β2* nicotinic acetylcholine receptors in human obesity

    Get PDF
    Purpose: Obesity is thought to arise, in part, from deficits in the inhibitory control over appetitive behavior. Such motivational processes are regulated by neuromodulators, specifically acetylcholine (ACh), via α4β2* nicotinic ACh receptors (nAChR). These nAChR are highly enriched in the thalamus and contribute to the thalamic gating of cortico-striatal signaling, but also act on the mesoaccumbal reward system. The changes in α4β2* nAChR availability, however, have not been demonstrated in human obesity thus far. The aim of our study was, thus, to investigate whether there is altered brain α4β2* nAChR availability in individuals with obesity compared to normal-weight healthy controls. Methods: We studied 15 non-smoking individuals with obesity (body mass index, BMI: 37.8 ± 3.1 kg/m2; age: 39 ± 14 years, 9 females) and 16 normal-weight controls (non-smokers, BMI: 21.9 ± 1.7 kg/m2; age: 28 ± 7 years, 13 females) by using PET and the α4β2* nAChR selective (−)-[18F]flubatine, which was applied within a bolus-infusion protocol (294 ± 16 MBq). Volume-of-interest (VOI) analysis was performed in order to calculate the regional total distribution volume (VT). Results: No overall significant difference in VT between the individuals with obesity and the normal-weight volunteers was found, while the VT in the nucleus basalis of Meynert tended to be lower in the individuals with obesity (10.1 ± 2.1 versus 11.9 ± 2.2; p = 0.10), and the VT in the thalamus showed a tendency towards higher values in the individuals with obesity (26.5 ± 2.5 versus 25.9 ± 4.2; p = 0.09). Conclusion: While these first data do not show greater brain α4β2* nAChR availability in human obesity overall, the findings of potentially aberrant α4β2* nAChR availability in the key brain regions that regulate feeding behavior merit further exploration
    corecore