7,161 research outputs found

    Using R-based VOStat as a low resolution spectrum analysis tool

    Get PDF
    We describe here an online software suite VOStat written mainly for the Virtual Observatory, a novel structure in which astronomers share terabyte scale data. Written mostly in the public-domain statistical computing language and environment R, it can do a variety of statistical analysis on multidimensional, multi-epoch data with errors. Included are techniques which allow astronomers to start with multi-color data in the form of low-resolution spectra and select special kinds of sources in a variety of ways including color outliers. Here we describe the tool and demonstrate it with an example from Palomar-QUEST, a synoptic sky survey

    Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light \ud

    Get PDF
    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a turbid suspension of particles undergoing Brownian and translational motion. The path length resolution of this instrument is compared with a system using single mode fibers for illumination and detection. The optical path lengths are determined from the zero order moment of the phase modulation peak in the power spectrum. The weighted first moment, which is equal to the average Doppler shift, shows a linear response for different mean flow velocities within the physiological rang

    Multifacility location problems on a sphere

    Get PDF
    A unified approach to multisource location problems on a sphere is presented. Euclidean, squared Euclidean and the great circle distances are considered. An algorithm is formulated and its convergence properties are investigated

    Building GUTs from strings

    Get PDF
    We study in detail the structure of Grand Unified Theories derived as the low-energy limit of orbifold four-dimensional strings. To this aim, new techniques for building level-two symmetric orbifold theories are presented. New classes of GUTs in the context of symmetric orbifolds are then constructed. The method of permutation modding is further explored and SO(10) GUTs with both 4545 or 5454-plets are obtained. SU(5) models are also found through this method. It is shown that, in the context of symmetric orbifold SO(10)SO(10) GUTs, only a single GUT-Higgs, either a 5454 or a 4545, can be present and it always resides in an order-two untwisted sector. Very restrictive results also hold in the case of SU(5)SU(5). General properties and selection rules for string GUTs are described. Some of these selection rules forbid the presence of some particular GUT-Higgs couplings which are sometimes used in SUSY-GUT model building. Some semi-realistic string GUT examples are presented and their properties briefly discussed.Comment: 40 pages, no figures, Late

    Sterile neutrino decay and the LSND experiment

    Full text link
    We propose a new explanation of the intriguing LSND evidence for electron antineutrino appearance in terms of heavy (mostly sterile) neutrino decay via a coupling with a light scalar and light (mostly active) neutrinos. We perform a fit to the LSND data, as well as all relevant null-result experiments, taking into account the distortion of the spectrum due to decay. By requiring a coupling g ~ 10^{-5}, a heavy neutrino mass m_4 ~ 100 keV and a mixing with muon neutrinos |U_{mu 4}|^2 ~ 10^{-2}, we show that this model explains all existing data evading constraints that disfavor standard (3+1) neutrino models.Comment: 3pp. Talk given at 9th International Conference on Astroparticle and Underground Physics (TAUP 2005), Zaragoza, Spain, 10-14 Sep 200

    Eliminating the d=5 proton decay operators from SUSY GUTs

    Get PDF
    A general analysis is made of the question whether the d=5 proton decay operators coming from exchange of colored Higgsinos can be completely eliminated in a natural way in supersymmetric grand unified models. It is shown that they can indeed be in SO(10) while at the same time naturally solving the doublet-triplet splitting problem, having only two light Higgs doublets, and using no more than a single adjoint Higgs field. Accomplishing all of this requires that the vacuum expectation value of the adjoint Higgs field be proportional to the generator I_{3R} rather than to B-L, as is usually assumed. It is shown that such models can give realistic quark and lepton masses. We also point out a new mechanism for solving the \mu problem in the context of SO(10) SUSY GUTs.Comment: 24 pages in LaTeX, with 3 figure

    Lepton Flavor Violation and the Origin of the Seesaw Mechanism

    Get PDF
    The right--handed neutrino mass matrix that is central to the understanding of small neutrino masses via the seesaw mechanism can arise either (i) from renormalizable operators or (ii) from nonrenormalizable or super-renormalizable operators, depending on the symmetries and the Higgs content of the theory beyond the Standard Model. In this paper, we study lepton flavor violating (LFV) effects in the first class of seesaw models wherein the \nu_R Majorana masses arise from renormalizable Yukawa couplings involving a B-L = 2 Higgs field. We present detailed predictions for \tau -> \mu + \gamma and \mu -> e + \gamma branching ratios in these models taking the current neutrino oscillation data into account. Focusing on minimal supergravity models, we find that for a large range of MSSM parameters suggested by the relic abundance of neutralino dark matter and that is consistent with Higgs boson mass and other constraints, these radiative decays are in the range accessible to planned experiments. We compare these predictions with lepton flavor violation in the second class of models arising entirely from the Dirac Yukawa couplings. We study the dependence of the ratio r \equiv B(\mu -> e+\gamma)/B(\tau ->\mu +\gamma) on the MSSM parameters and show that measurement of r can provide crucial insight into the origin of the seesaw mechanism.Comment: 20 pages, Revtex, 7 figure

    The Stability of the Gauge Hierarchy in SU(5)Ă—SU(5)SU(5) \times SU(5)

    Full text link
    It has been shown that the Dimopoulos-Wilczek (or missing-VEV) mechanism for doublet-triplet splitting can be implemented in SU(5)Ă—SU(5)SU(5) \times SU(5) models, which requires no adjoint Higgs fields. This is an advantage from the point of view of string theory construction. Here the stability of the gauge hierarchy is examined in detail, and it is shown that it can be guaranteed much more simply than in SO(10)SO(10). In fact a Z2Z_2 symmetry ensures the stability of the DW form of the expectation values to all orders in GUT-scale VEVs. It is also shown that models based on SO(10)Ă—SU(5)SO(10) \times SU(5) have the advantages of SU(5)Ă—SU(5)SU(5) \times SU(5) while permitting complete quark-lepton unification as in SO(10)SO(10).Comment: 13 pages, LaTe

    Supersymmetric SO(10) Simplified

    Full text link
    In the context of supersymmetric SO(10)SO(10) grand unified models, it is shown that the gauge symmetry breaking as well as a natural doublet--triplet splitting can be achieved with a minimal Higgs system consisting of a single adjoint and a pair of vector and spinor multiplets. Such a Higgs spectrum has been shown to arise in the free fermionic formulation of superstrings. Since the symmetry breaking mechanism relies on non--renormalizable operators, some of the Higgs particles of the model turn out to have masses somewhat below the GUT scale. As a consequence, the unification scale is raised to about 2×1017 GeV2 \times 10^{17}~GeV and sin2θW^2\theta_W is predicted to be slightly larger than the minimal SUSY--SU(5)SU(5) value. Including threshold uncertainties, which turn out to be surprisingly small in the model, we show that sin2θW^2\theta_W prediction is consistent with experiments.Comment: 23 pages, BA-94-4
    • …
    corecore