867 research outputs found
Landau-Fermi liquid analysis of the 2D t-t' Hubbard model
We calculate the Landau interaction function f(k,k') for the two-dimensional
t-t' Hubbard model on the square lattice using second and higher order
perturbation theory. Within the Landau-Fermi liquid framework we discuss the
behavior of spin and charge susceptibilities as function of the onsite
interaction and band filling. In particular we analyze the role of elastic
umklapp processes as driving force for the anisotropic reduction of the
compressibility on parts of the Fermi surface.Comment: 10 pages, 16 figure
Temperature Dependence of the Superfluid Density in a Noncentrosymmetric Superconductor
For a noncentrosymmetric superconductor such as CePt3Si, we consider a Cooper
pairing model with a two-component order parameter composed of spin-singlet and
spin-triplet pairing components.
We calculate the superfluid density tensor in the clean limit on the basis of
the quasiclassical theory of superconductivity.
We demonstrate that such a pairing model accounts for an experimentally
observed feature of the temperature dependence of the London penetration depth
in CePt3Si, i.e., line-node-gap behavior at low temperatures.Comment: 10 page
Superconductivity without Local Inversion Symmetry; Multi-layer Systems
While multi-layer systems can possess global inversion centers, they can have
regions with locally broken inversion symmetry. This can modify the
superconducting properties of such a system. Here we analyze two dimensional
multi-layer systems yielding spatially modulated antisymmetric spin-orbit
coupling (ASOC) and discuss superconductivity with mixed parity order
parameters. In particular, the influence of ASOC on the spin susceptibility is
investigated at zero temperature. For weak inter-layer coupling we find an
enhanced spin susceptibility induced by ASOC, which hints the potential
importance of this aspect for superconducting phase in specially structured
superlattices.Comment: 4 pages, 2 figures, proceedings of the 26th International Conference
on Low Temperature Physics (LT26
On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities
We study a non-local variant of a diffuse interface model proposed by
Hawkins--Darrud et al. (2012) for tumour growth in the presence of a chemical
species acting as nutrient. The system consists of a Cahn--Hilliard equation
coupled to a reaction-diffusion equation. For non-degenerate mobilities and
smooth potentials, we derive well-posedness results, which are the non-local
analogue of those obtained in Frigeri et al. (European J. Appl. Math. 2015).
Furthermore, we establish existence of weak solutions for the case of
degenerate mobilities and singular potentials, which serves to confine the
order parameter to its physically relevant interval. Due to the non-local
nature of the equations, under additional assumptions continuous dependence on
initial data can also be shown.Comment: 28 page
Electron-pairing in the quantum Hall regime due to neutralon exchange
The behavior of electrons in condensed matter systems is mostly determined by
the repulsive Coulomb interaction. However, under special circumstances the
Coulomb interaction can be effectively attractive, giving rise to electron
pairing in unconventional superconductors and specifically designed mesoscopic
setups. In quantum Hall systems electron interactions can play a particularly
important role due to the huge degeneracy of Landau levels, leading for
instance to the emergence of quasi-particles with fractional charge and anyonic
statistics. Quantum Hall Fabry-P\'erot (FPI) interferometers have attracted
increasing attention due to their ability to probe such exotic physics. In
addition, such interferometers are affected by electron interactions themselves
in interesting ways. Recently, experimental evidence for electron pairing in a
quantum Hall FPI was found (H.K. Choi et al., Nat. Comm 6, 7435 (2015)) .
Theoretically describing an FPI in the limit of strong backscattering and under
the influence of a screened Coulomb interaction, we compute electron shot noise
and indeed find a two-fold enhanced Fano factor for some parameters, indicative
of electron pairing. This result is explained in terms of an electron
interaction due to exchange of neutral inter-edge plasmons, so-called
neutralons.Comment: 14+4 pages. 14+4 figure
Using Josephson junctions to determine the pairing state of superconductors without crystal inversion symmetry
Theoretical studies of a planar tunnel junction between two superconductors
with antisymmetric spin-orbit coupling are presented. The half-space Green's
function for such a superconductor is determined. This is then used to derive
expressions for the dissipative current and the Josephson current of the
junction. Numerical results are presented in the case of the Rashba spin-orbit
coupling, relevant to the much studied compound CePtSi. Current-voltage
diagrams, differential conductance and the critical Josephson current are
presented for different crystallographic orientations and different weights of
singlet and triplet components of the pairing state. The main conclusion is
that Josephson junctions with different crystallographic orientations may
provide a direct connection between unconventional pairing in superconductors
of this kind and the absence of inversion symmetry in the crystal.Comment: 16 pages, 10 figure
- …