1,126 research outputs found
Single-Scattering Optical Tomography
We consider the problem of optical tomographic imaging in the mesoscopic
regime where the photon mean free path is of order of the system size. Within
the accuracy of the single-scattering approximation to the radiative transport
equation, we show that it is possible to recover the extinction coefficient of
an inhomogeneous medium from angularly-resolved measurements. Applications to
biomedical imaging are described and illustrated with numerical simulations.Comment: Finalized and submitted to PR
'Noise trader risk' and Bayesian market making in FX derivatives: rolling loaded dice?
ABSTRACT This paper develops and simulates a model of a Bayesian market maker who transacts with noise and position traders in derivative markets. The impact of noise trading is examined relative to price determination in FX futures, noise transmission from futures to options, and risk-management behaviour linking the two markets. The model simulations show noise trading in futures results in wider bid–ask spreads, increased price volatility, and greater variation in hedging costs. Above all, the Bayesian market maker manages price-risk by trend chasing not for speculative purposes, but to avoid being caught on the wrong side of the market. The pecuniary effects from this risk-management strategy suggest that noise trading tends to constrain the market maker’s capacity to arbitrage; particularly when the underlying price is mean averting as opposed to a Martingale and trading sessions exhibit significant price volatility. Copyright r 2008 John Wiley & Sons, Ltd. Copyright r 2008 John Wiley & Sons, Ltd.Noise trading; market making; FX derivatives; Bayesian agent; noise transmission
Role of Fragment Higher Static Deformations in the Cold Binary Fission of Cf
We study the binary cold fission of Cf in the frame of a cluster
model where the fragments are born to their respective ground states and
interact via a double-folded potential with deformation effects taken into
account up to multipolarity . The preformation factors were
neglected. In the case when the fragments are assumed to be spherical or with
ground state quadrupole deformation, the -value principle dictates the
occurence of a narrow region around the double magic Sn, like in the
case of cluster radioactivity. When the hexadecupole deformation is turned on,
an entire mass-region of cold fission in the range 138 - 156 for the heavy
fragment arise, in agreement with the experimental observations.
This fact suggests that in the above mentioned mass-region, contrary to the
usual cluster radioactivity where the daughter nucleus is always a
neutron/proton (or both) closed shell or nearly closed shell spherical nucleus,
the clusterization mechanism seems to be strongly influenced by the
hexadecupole deformations rather than the -value.Comment: 10 pages, 12 figure
Single-Scattering Optical Tomography: Simultaneous Reconstruction of Scattering and Absorption
We demonstrate that simultaneous reconstruction of scattering and absorption
of a mesoscopic system using angularly-resolved measurements of scattered light
intensity is possible. Image reconstruction is realized based on the algebraic
inversion of a generalized Radon transform relating the scattering and
absorption coefficients of the medium to the measured light intensity and
derived using the single-scattering approximation to the radiative transport
equation.Comment: This is a sequel to physics/070311
Inversion formulas for the broken-ray Radon transform
We consider the inverse problem of the broken ray transform (sometimes also
referred to as the V-line transform). Explicit image reconstruction formulas
are derived and tested numerically. The obtained formulas are generalizations
of the filtered backprojection formula of the conventional Radon transform. The
advantages of the broken ray transform include the possibility to reconstruct
the absorption and the scattering coefficients of the medium simultaneously and
the possibility to utilize scattered radiation which, in the case of the
conventional X-ray tomography, is typically discarded.Comment: To be submitted to Inverse Problem
XML Reconstruction View Selection in XML Databases: Complexity Analysis and Approximation Scheme
Query evaluation in an XML database requires reconstructing XML subtrees
rooted at nodes found by an XML query. Since XML subtree reconstruction can be
expensive, one approach to improve query response time is to use reconstruction
views - materialized XML subtrees of an XML document, whose nodes are
frequently accessed by XML queries. For this approach to be efficient, the
principal requirement is a framework for view selection. In this work, we are
the first to formalize and study the problem of XML reconstruction view
selection. The input is a tree , in which every node has a size
and profit , and the size limitation . The target is to find a subset
of subtrees rooted at nodes respectively such that
, and is maximal.
Furthermore, there is no overlap between any two subtrees selected in the
solution. We prove that this problem is NP-hard and present a fully
polynomial-time approximation scheme (FPTAS) as a solution
Self-optimization of optical confinement in ultraviolet photonic crystal slab laser
We studied numerically and experimentally the effects of structural disorder
on the performance of ultraviolet photonic crystal slab lasers. Optical gain
selectively amplifies the high-quality modes of the passive system. For these
modes, the in-plane and out-of-plane leakage rates may be automatically
balanced in the presence of disorder. The spontaneous optimization of in-plane
and out-of-plane confinement of light in a photonic crystal slab may lead to a
reduction of the lasing threshold.Comment: 5 pages, 5 figure
Phonon-induced electron relaxation in weakly-confined single and coupled quantum dots
We investigate charge relaxation rates due to acoustic phonons in
weakly-confined quantum dot systems, including both deformation potential and
piezoelectric field interactions. Single-electron excited states lifetimes are
calculated for single and coupled quantum dot structures, both in homonuclear
and heteronuclear devices. Piezoelectric field scattering is shown to be the
dominant relaxation mechanism in many experimentally relevant situations. On
the other hand, we show that appropriate structure design allows to minimize
separately deformation potential and piezolectric field interactions, and may
bring electron lifetimes in the range of microseconds.Comment: 20 pages (preprint format), 7 figures, submitted to Physical Review
Switchable lasing in coupled multimode microcavities
We propose the new concept of a switchable multimode microlaser. As a
generic, realistic model of a multimode microresonator a system of two coupled
defects in a two-dimensional photonic crystal is considered. We demonstrate
theoretically that lasing of the cavity into one selected resonator mode can be
caused by injecting an appropriate optical pulse at the onset of laser action
(injection seeding). Temporal mode-to-mode switching by re-seeding the cavity
after a short cool-down period is demonstrated by direct numerical solution. A
qualitative analytical explanation of the mode switching in terms of the laser
bistability is presented.Comment: Accepted for publication in Physical Review Letters. Published,
somewhat shortened versio
- …
