2,492 research outputs found

    Epidemiology: a tool for the assessment of risk

    Get PDF
    The purpose of this chapter is to introduce and demonstrate the use of a key tool for the assessment of risk. The word epidemiology is derived from Greek and its literal interpretation is 'studies of people'. A more usual definition, however is the scientific study of disease patters among populations in time and space. This chapter introduces some of the techniques used in epidemiology studies and illustrates their uses in the evaluation or setting of microbiological guidelines for recreational water, wastewater reuse and drinking water

    Evaluating Methods for Evaluating Instruction: The Case of Higher Education

    Get PDF
    This paper develops an original measure of learning in higher education, based on grades in subsequent courses. Using this measure of learning, this paper shows that student evaluations are positively related to current grades but unrelated to learning once current grades are controlled. It offers evidence that the weak relationship between learning and student evaluations arises, in part, because students are unaware of how much they have learned in a course. The paper concludes with a discussion of easily-implemented, optimal methods for evaluating teaching.

    Nonequilibrium nuclear-electron spin dynamics in semiconductor quantum dots

    Full text link
    We study the spin dynamics in charged quantum dots in the situation where the resident electron is coupled to only about 200 nuclear spins and where the electron spin splitting induced by the Overhauser field does not exceed markedly the spectral broadening. The formation of a dynamical nuclear polarization as well as its subsequent decay by the dipole-dipole interaction is directly resolved in time. Because not limited by intrinsic nonlinearities, almost complete nuclear polarization is achieved, even at elevated temperatures. The data suggest a nonequilibrium mode of nuclear polarization, distinctly different from the spin temperature concept exploited on bulk semiconductorsComment: 5 pages, 4 figure

    Novel hybrid method to additively manufacture denser graphite structures using Binder Jetting.

    Get PDF
    This study introduces two hybrid processes integrating an additive manufacturing technique with post-processing treatments namely (i) Binder Jetting Printing (BJP) + Cold Isostatic Pressing (CIP) + cycle and (ii) BJP + cycle where cycle refers to a sequence of Impregnation-Drying-Pyrolysis. These two new processes yielded additively manufactured parts with higher density and reduced defects/porosities. As a testbed, we used these new processes to fabricate graphite structures. The samples produced by both methods were compared with each other and benchmarked to the samples produced by (a) BJP alone and (b) Traditional uniaxial pressing like compaction moulding. Various characterisation methods were used to investigate the microstructure and mechanical properties which showed that the porosity of hybrid manufactured samples reduces from 55% to a record 7%. This technological pathway is expected to create a new avalanche of industrial applications that are hitherto unexplored in the arena of hybrid additive manufacturing with BJP method

    Absolute ¹³C/¹²C isotope amount ratio for Vienna PeeDee Belemnite from infrared absorption spectroscopy

    Get PDF
    Measurements of isotope ratios are predominantly made with reference to standard specimens that have been characterized in the past. In the 1950s, the carbon isotope ratio was referenced to a belemnite sample collected by Heinz Lowenstam and Harold Urey in South Carolina’s PeeDee region. Due to exhaustion of the sample since then, reference materials that are traceable to the original artefact are used to define the Vienna PeeDee Belemnite scale for stable carbon isotope analysis. However, these reference materials have also become exhausted or proven to exhibit unstable composition over time, mirroring issues with the international prototype of the kilogram that led to a revised International System of Units. A campaign to elucidate the stable carbon isotope ratio of Vienna PeeDee Belemnite is underway, but independent measurement techniques are required to support it. Here we report an accurate value for the stable carbon isotope ratio inferred from infrared absorption spectroscopy, fulfilling the promise of this fundamentally accurate approach. Our results agree with a value recently derived from mass spectrometry and therefore advance the prospects of International System of Units–traceable isotope analysis. Further, our calibration-free method could improve mass balance calculations and enhance isotopic tracer studies in carbon dioxide source apportionment

    Covariant equations for the three-body bound state

    Get PDF
    The covariant spectator (or Gross) equations for the bound state of three identical spin 1/2 particles, in which two of the three interacting particles are always on shell, are developed and reduced to a form suitable for numerical solution. The equations are first written in operator form and compared to the Bethe-Salpeter equation, then expanded into plane wave momentum states, and finally expanded into partial waves using the three-body helicity formalism first introduced by Wick. In order to solve the equations, the two-body scattering amplitudes must be boosted from the overall three-body rest frame to their individual two-body rest frames, and all effects which arise from these boosts, including the Wigner rotations and rho-spin decomposition of the off-shell particle, are treated exactly. In their final form, the equations reduce to a coupled set of Faddeev-like double integral equations with additional channels arising from the negative rho-spin states of the off-shell particle.Comment: 57 pages, RevTeX, 6 figures, uses epsf.st
    corecore