2,100 research outputs found

    Optical Observations of Type II Supernovae

    Full text link
    I present an overview of optical observations (mostly spectra) of Type II supernovae. SNe II are defined by the presence of hydrogen, and exhibit a very wide variety of properties. SNe II-L tend to show evidence of late-time interaction with circumstellar material. SNe IIn are distinguished by relatively narrow emission lines with little or no P-Cygni absorption component and (quite often) slowly declining light curves; they probably have unusually dense circumstellar gas with which the ejecta interact. Some SNe IIn, however, might not be genuine SNe, but rather are super-outbursts of luminous blue variables. The progenitors of SNe IIb contain only a low-mass skin of hydrogen; their spectra gradually evolve to resemble those of SNe Ib. Limited spectropolarimetry thus far indicates large asymmetries in the ejecta of SNe IIn, but much smaller ones in SNe II-P. There is intriguing, but still inconclusive, evidence that some peculiar SNe IIn might be associated with gamma-ray bursts. SNe II-P are useful for cosmological distance determinations with the Expanding Photosphere Method, which is independent of the Cepheid distance scale.Comment: 18 pages, 10 embedded figures, latex with aipproc style file included, to appear in "Cosmic Explosions" -- eds. S. Holt and W. W. Zhang (New York: American Institute of Physics), 200

    SN 2001em: No Jet-Driven Gamma Ray Burst Event

    Full text link
    We report on our second-epoch VLBI and VLA observations of the Type Ib/c supernova 2001em, five years after the explosion. It was suggested that SN 2001em might be a jet-driven gamma ray burst (GRB), with the jet oriented near the plane of the sky, which would entail relativistic expansion or motion. Our VLBI image shows that SN 2001em is still unresolved five years after the explosion. For a distance of 83 Mpc (H_0 = 70 km/s/Mpc), the nominal expansion velocity is 5800 +/- 10,000 km/s, and the proper motion is 33,000 +/- 34,000 km/s. Our values are inconsistent with either relativistic expansion or motion, but are consistent with the non-relativistic expansion speeds and small proper motions seen in other supernovae. In particular these values are consistent with radio emission from SN 2001em being due to normal, non-relativistic supernova ejecta interacting with the circumstellar medium. Our VLA observations show a power-law decay in flux density since the time of the peak in the 8.4 GHz radio lightcurve in ~2003.Comment: 5 pages, 2 figs, accepted for publication in ApJ Letters; added reference

    Reading the Spectra of the Most Peculiar Type Ia Supernova 2002cx

    Full text link
    In spite of the apparent lack of Si II and S II features in its spectra, SN 2002cx was classified as a peculiar Type Ia supernova (SN Ia) on the basis of its overall photometric and spectroscopic behavior. Spectra obtained near maximum light contained Fe III features, as in SN 1991T-like events, but the blueshifts of the Fe III absorptions were exceptionally low. The luminosity also was low. We use the supernova synthetic--spectrum code SYNOW to study line identifications in SN 2002cx. We find that the maximum-light spectra appear to contain weak features of Si II, S II, Si III, and Ca II, which strengthens the connection with SN 1991T-like events. We show that later spectra, obtained 12, 25, and 56 days after maximum, consist of P-Cygni resonance-scattering features due to permitted Fe II and Co II lines. SN 2002cx had been thought to have made the transition from a permitted-line to a forbidden-line spectrum between 25 and 56 days. Owing to the low expansion velocities the postmaximum spectral features are narrower and easier to identify than they are in other SNe Ia. SN 2002cx will lead to improved line identifications in other SNe Ia and clarify when the transition from a permitted-line to a forbidden-line spectrum occurs. In the context of current SN Ia explosion models, we suggest that the properties of SN 2002cx may be consistent with 3D deflagration models, which are not favored for normal SNe Ia.Comment: 21 pages including 7 figures and 4 tables; accepted by PAS

    The Progenitors of Recent Core-Collapse Supernovae

    Get PDF
    We present the results of our analysis of Hubble Space Telescope (HST) and deep ground-based images to isolate the massive progenitor stars of the two recent core-collapse supernovae 2008 bk and 2008 cn. The identification of the progenitors is facilitated in one of these two cases by high-precision astrometry based on our HST imaging of SNe at late times

    A one-dimensional tunable magnetic metamaterial

    Get PDF
    We present experimental data on a one-dimensional superconducting metamaterial that is tunable over a broad frequency band. The basic building block of this magnetic thin-film medium is a single-junction (rf-) superconducting quantum interference device (SQUID). Due to the nonlinear inductance of such an element, its resonance frequency is tunable in situ by applying a dc magnetic field. We demonstrate that this results in tunable effective parameters of our metamaterial consisting of 54 SQUIDs. In order to obtain the effective magnetic permeability from the measured data, we employ a technique that uses only the complex transmission coefficient S21

    GRB 021004: A Possible Shell Nebula around a Wolf-Rayet Star Gamma-Ray Burst Progenitor

    Full text link
    The rapid localization of GRB 021004 by the HETE-2 satellite allowed nearly continuous monitoring of its early optical afterglow decay, as well as high-quality optical spectra that determined a redshift of z=2.328 for its host, an active starburst galaxy with strong Lyman-alpha emission and several absorption lines. Spectral observations show multiple absorbers blueshifted by up to 3,155 km/s relative to the host galaxy Lyman-alpha emission.We argue that these correspond to a fragmented shell nebula, gradually enriched by a Wolf-Rayet wind over the lifetime of a massive progenitor bubble. In this scenario, the absorbers can be explained by circumstellar material that have been radiatively accelerated by the GRB emission. Dynamical and photoionization models are used to provide constraints on the radiative acceleration from the early afterglow.Comment: 5 pages, 3 figures, to appear in the proceedings of the 2003 GRB Conferenc

    Luminous Supernovae

    Full text link
    Supernovae (SNe), the luminous explosions of stars, were observed since antiquity, with typical peak luminosity not exceeding 1.2x10^{43} erg/s (absolute magnitude >-19.5 mag). It is only in the last dozen years that numerous examples of SNe that are substantially super-luminous (>7x10^{43} erg/s; <-21 mag absolute) were well-documented. Reviewing the accumulated evidence, we define three broad classes of super-luminous SN events (SLSNe). Hydrogen-rich events (SLSN-II) radiate photons diffusing out from thick hydrogen layers where they have been deposited by strong shocks, and often show signs of interaction with circumstellar material. SLSN-R, a rare class of hydrogen-poor events, are powered by very large amounts of radioactive 56Ni and arguably result from explosions of very massive stars due to the pair instability. A third, distinct group of hydrogen-poor events emits photons from rapidly-expanding hydrogen-poor material distributed over large radii, and are not powered by radioactivity (SLSN-I). These may be the hydrogen-poor analogs of SLSN-II.Comment: This manuscript has been accepted for publication in Science (to appear August 24). This version has not undergone final editing. Please refer to the complete version of record at http://www.sciencemag.org/. The manuscript may not be reproduced or used in any manner that does not fall within the fair use provisions of the Copyright Act without the prior, written permission of AAA
    corecore