204 research outputs found
Regions of beta 2 and beta 4 responsible for differences between the steady state dose-response relationships of the alpha 3 beta 2 and alpha 3 beta 4 neuronal nicotinic receptors
We constructed chimeras of the rat beta 2 and beta 4 neuronal nicotinic subunits to locate the regions that contribute to differences between the acetylcholine (ACh) dose-response relationships of the alpha 3 beta 2 and alpha 3 beta 4 receptors. Expressed in Xenopus oocytes, the alpha 3 beta 2 receptor displays an EC50 for ACh approximately 20-fold less than the EC50 of the alpha 3 beta 4 receptor. The apparent Hill slope (n(app)) of alpha 3 beta 2 is near one whereas the alpha 3 beta 4 receptor displays an n(app) near two. Substitutions within the first 120 residues convert the EC50 for ACh from one wild-type value to the other. Exchanging just beta 2:104-120 for the corresponding region of beta 4 shifts the EC50 of ACh dose-response relationship in the expected direction but does not completely convert the EC50 of the dose- response relationship from one wild-type value to the other. However, substitutions in the beta 2:104-120 region do account for the relative sensitivity of the alpha 3 beta 2 receptor to cytisine, tetramethylammonium, and ACh. The expression of beta 4-like (strong) cooperativity requires an extensive region of beta 4 (beta 4:1-301). Relatively short beta 2 substitutions (beta 2:104-120) can reduce cooperativity to beta 2-like values. The results suggest that amino acids within the first 120 residues of beta 2 and the corresponding region of beta 4 contribute to an agonist binding site that bridges the alpha and beta subunits in neuronal nicotinic receptors
Semiclassical limits to the linewidth of an atom laser
We investigate the linewidth of a quasi-continuous atom laser within a
semiclassical framework. In the high flux regime, the lasing mode can exhibit a
number of undesirable features such as density fluctuations. We show that the
output therefore has a complicated structure that can be somewhat simplified
using Raman outcoupling methods and energy-momentum selection rules. In the
weak outcoupling limit, we find that the linewidth of an atom laser is
instantaneously Fourier limited, but, due to the energy `chirp' associated with
the draining of a condensate, the long-term linewidth of an atom laser is
equivalent to the chemical potential of the condensate source. We show that
correctly sweeping the outcoupling frequency can recover the Fourier-limited
linewidth.Comment: 9 Figure
Achieving peak brightness in an atom laser
In this paper we present experimental results and theory on the first
continuous (long pulse) Raman atom laser. The brightness that can be achieved
with this system is three orders of magnitude greater than has been previously
demonstrated in any other continuously outcoupled atom laser. In addition, the
energy linewidth of a continuous atom laser can be made arbitrarily narrow
compared to the mean field energy of a trapped condensate. We analyze the flux
and brightness of the atom laser with an analytic model that shows excellent
agreement with experiment with no adjustable parameters.Comment: 4 pages, 4 black and white figures, submitted to Physical Revie
Quantum projection noise limited interferometry with coherent atoms in a Ramsey type setup
Every measurement of the population in an uncorrelated ensemble of two-level
systems is limited by what is known as the quantum projection noise limit.
Here, we present quantum projection noise limited performance of a Ramsey type
interferometer using freely propagating coherent atoms. The experimental setup
is based on an electro-optic modulator in an inherently stable Sagnac
interferometer, optically coupling the two interfering atomic states via a
two-photon Raman transition. Going beyond the quantum projection noise limit
requires the use of reduced quantum uncertainty (squeezed) states. The
experiment described demonstrates atom interferometry at the fundamental noise
level and allows the observation of possible squeezing effects in an atom
laser, potentially leading to improved sensitivity in atom interferometers.Comment: 8 pages, 8 figures, published in Phys. Rev.
A detector for continuous measurement of ultra-cold atoms in real time
We present the first detector capable of recording high-bandwidth real time
atom number density measurements of a Bose Einstein condensate. Based on a
two-color Mach-Zehnder interferometer, our detector has a response time that is
six orders of magnitude faster than current detectors based on CCD cameras
while still operating at the shot-noise limit. With this minimally destructive
system it may be possible to implement feedback to stabilize a Bose-Einstein
condensate or an atom laser.Comment: 3 pages, 3 figures, submitted to optics letter
Rb-85 tunable-interaction Bose-Einstein condensate machine
We describe our experimental setup for creating stable Bose-Einstein
condensates of Rb-85 with tunable interparticle interactions. We use
sympathetic cooling with Rb-87 in two stages, initially in a tight
Ioffe-Pritchard magnetic trap and subsequently in a weak, large-volume crossed
optical dipole trap, using the 155 G Feshbach resonance to manipulate the
elastic and inelastic scattering properties of the Rb-85 atoms. Typical Rb-85
condensates contain 4 x 10^4 atoms with a scattering length of a=+200a_0. Our
minimalist apparatus is well-suited to experiments on dual-species and spinor
Rb condensates, and has several simplifications over the Rb-85 BEC machine at
JILA (Papp, 2007; Papp and Wieman, 2006), which we discuss at the end of this
article.Comment: 10 pages, 8 figure
Ramsey interferometry with an atom laser
We present results on a free-space atom interferometer operating on the first
order magnetically insensitive |F=1,mF=0> -> |F=2,mF=0> transition of
Bose-condensed 87Rb atoms. A pulsed atom laser is output-coupled from a
Bose-Einstein condensate and propagates through a sequence of two internal
state beam splitters, realized via coherent Raman transitions between the two
interfering states. We observe Ramsey fringes with a visibility close to 100%
and determine the current and the potentially achievable interferometric phase
sensitivity. This system is well suited to testing recent proposals for
generating and detecting squeezed atomic states.Comment: published version, 8 pages, 3 figure
RALph: A Graphical Notation for Resource Assignments in Business Processes
The business process (BP) resource perspective deals with the management of human as well as non-human resources throughout the process lifecycle. Although it has received increasing attention recently, there exists no graphical notation for it up until now that is both expressive enough to cover well-known resource selection conditions and independent of the BP modelling language. In this paper, we introduce RALph, a graphical notation for the assignment of human resources to BP activities. We define its semantics by mapping this notation to a language that has been formally defined in description logics, which enables its automated analysis. Although we show how RALph can be seamlessly integrated with BPMN, it is noteworthy that the notation is independent of the BP modelling language. Altogether, RALph will foster the visual modelling of the resource perspective in BP
Orchestrating learning activities using the CADMOS learning design tool
This paper gives an overview of CADMOS (CoursewAre Development Methodology for Open instructional Systems), a graphical IMS-LD Level A & B compliant learning design (LD) tool, which promotes the concept of “separation of concerns” during the design process, via the creation of two models: the conceptual model, which describes the learning activities and the corresponding learning resources, and the flow model, which describes the orchestration of these activities. According to the feedback from an evaluation case study with 36 participants, reported in this paper, CADMOS is a user-friendly tool that allows educational practitioners to design flows of learning activities using a layered approach
- …
