239 research outputs found

    Bridelia ferruginea Produces Anti-neuroinflammatory Activity through Inhibition of Nuclear Factor-kappa B and p38 MAPK Signalling

    Get PDF
    Bridelia ferruginea is commonly used in traditional African medicine (TAM) for treating various inflammatory conditions. Extracts from the plant have been shown to exhibit anti-inflammatory property in a number of in vivo models. In this study the influence of B. ferruginea (BFE) on the production of PGE2, nitrite, and proinflammatory cytokines from LPS-stimulated BV-2 microglia was investigated. The effects of BFE on cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) protein expressions were evaluated in LPS-activated rat primary microglia. The roles of NF-κB and MAPK signalling in the actions of BFE were also investigated. BFE (25–200 μg) inhibited the production of PGE2, nitrite, tumour necrosis factor-α (TNFα), and interleukin-6 (IL-6) as well as COX-2 and iNOS protein expressions in LPS-activated microglial cells. Further studies to elucidate the mechanism of anti-inflammatory action of BFE revealed interference with nuclear translocation of NF-κBp65 through mechanisms involving inhibition of IκB degradation. BFE prevented phosphorylation of p38, but not p42/44 or JNK MAPK. It is suggested that Bridelia ferruginea produces anti-inflammatory action through mechanisms involving p38 MAPK and NF-κB signalling

    Cyclooxygenase Inhibition Limits Blood-Brain Barrier Disruption following Intracerebral Injection of Tumor Necrosis Factor-alpha in the Rat

    Get PDF
    Increased permeability of the blood-brain barrier (BBB) is important in neurological disorders. Neuroinflammation is associated with increased BBB breakdown and brain injury. Tumor necrosis factor-alpha (TNF-a) is involved in BBB injury and edema formation through a mechanism involving matrix metalloproteinase (MMP) upregulation. There is emerging evidence indicating that cyclooxygenase (COX) inhibition limits BBB disruption following ischemic stroke and bacterial meningitis, but the mechanisms involved are not known. We used intracerebral injection of TNF-a to study the effect of COX inhibition on TNF-a-induced BBB breakdown, MMP expression/activity and oxidative stress. BBB disruption was evaluated by the uptake of 14C-sucrose into the brain and by magnetic resonance imaging (MRI) utilizing Gd-DTPA as a paramagnetic contrast agent. Using selective inhibitors of each COX isoform, we found that COX-1 activity is more important than COX-2 in BBB opening. TNF-a induced a significant upregulation of gelatinase B (MMP-9), stromelysin-1 (MMP-3) and COX-2. In addition, TNF-a significantly depleted glutathione as compared to saline. Indomethacin (10 mg/kg; i.p.), an inhibitor of COX-1 and COX-2, reduced BBB damage at 24 h. Indomethacin significantly attenuated MMP-9 and MMP-3 expression and activation, and prevented the loss of endogenous radical scavenging capacity following intracerebral injection of TNF-a. Our results show for the first time that BBB disruption during neuroinflammation can be significantly reduced by administration of COX inhibitors. Modulation of COX in brain injury by COX inhibitors or agents modulating prostaglandin E2 formation/signaling may be useful in clinical settings associated with BBB disruption

    Inhibition of neuroinflammation by thymoquinone requires activation of Nrf2/ARE signalling

    Get PDF
    Thymoquinone is an antioxidant phytochemical that has been shown to inhibit neuroinflammation. However, little is known about the potential roles of intracellular antioxidant signalling pathways in its anti-inflammatory activity. The objective of this study was to elucidate the roles played by activation of the Nrf2/ARE antioxidant mechanisms in the anti-inflammatory activity of this compound. Thymoquinone inhibited lipopolysaccharide (LPS)-induced neuroinflammation through interference with NF-B signalling in BV2 microglia. Thymoquinone also activated Nrf2/ARE signalling by increasing nuclear localisation, DNA binding and transcriptional activity of Nrf2, as well as increasing protein levels of HO-1 and NQO1. Suppression of Nrf2 activity through siRNA or with the use of trigonelline resulted in the loss of anti-inflammatory activity by thymoquinone. Taken together, our studies show that thymoquinone inhibits NF-kappaB-dependent neuroinflammation in BV2 microglia, by targeting antioxidant pathway involving activation of both Nrf2/ARE. We propose that activation of Nrf2/ARE signalling pathway by thymoquinone probably results in inhibition of NF-kappaB-mediated neuroinflammation

    Comparative Immunomodulatory Activity of Nigella sativa L. Preparations on Proinflammatory Mediators: A Focus on Asthma

    Get PDF
    Introduction: A range of traditional and commercial preparations of NS is frequently used in the treatment of several inflammatory diseases. Often, these preparations have poor preclinical characterization that may lead to variable pharmacological effects.Objective: To assess the in vitro effects of different chemically defined preparations of NS on some asthma-related mediators of inflammation.Methods: Different NS preparations were obtained by either seed extraction with a spectrum of solvents ranging from lipophilic to hydrophilic, or commercial products were collected. The TQ concentration of NS was analyzed by HPLC. Immunomodulatory activity was assessed by the release of mediators (IL-2, IL-6, PGE2) in primary human T-lymphocytes, monocytes, and A549 human lung epithelial cells.Results: Ten distinct NS preparations showed variability in TQ concentration, being highest in the oily preparations extract-7 (2.4% w/w), followed by extract-10 (0.7%w/w). Similarly, the release of mediators was varied, being greatest in extract-7 and 10 via significantly (<0.05) suppressing IL-2, IL-6, and PGE2 in T-lymphocytes as well as IL-6 and PGE2 in monocytes. Also, PGE2 release in A549 cells was significantly enhanced by both extracts.Conclusion: The TQ concentration and in vitro activity were variable among the different NS preparations. TQ-rich oily NS preparations produced potent favorable immunomodulation in asthma inflammation and can be used in future studies

    Detrimental effects of tropisetron on permanent ischemic stroke in the rat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent <it>in vitro </it>evidence indicates that blockade of 5-hydroxytryptamine (5-HT) receptor 3 (5-HT<sub>3</sub>) is able to confer protection in different models of neuronal injury. The purpose of the present study was to investigate the effect of tropisetron, a 5-HT<sub>3 </sub>receptor antagonist, on infarct size and neurological score in a model of ischemic stroke induced by permanent middle cerebral artery occlusion (pMCAO) in the rat.</p> <p>Methods</p> <p>Two different doses of tropisetron (5 and 10 mg/kg) or vehicle were administered intraperitoneally 30 min before pMCAO. Neurological deficit scores, mortality rate and infarct volume were determined 24 h after permanent focal cerebral ischemia.</p> <p>Results</p> <p>Tropisetron failed to reduce cerebral infarction. Animals receiving tropisetron showed a significant increase (p < 0.05) in neurological deficits and mortality rate.</p> <p>Conclusion</p> <p>Data from this study indicate that blockade of 5-HT<sub>3 </sub>receptors with tropisetron worsens ischemic brain injury induced by pMCAO. These findings could have important clinical implications. Patients taking tropisetron, and possibly other 5-HT<sub>3 </sub>antagonists, could potentially have a worse outcome following a brain infarct.</p
    corecore