3,266 research outputs found
Free-carrier relaxation and lattice heating in photoexcited bismuth thin films
We report ultrafast surface pump and interface probe experiments on
photoexcited carrier transport across single crystal bismuth films on sapphire.
The film thickness is sufficient to separate carrier dynamics from lattice
heating and strain, allowing us to investigate the time-scales of momentum
relaxation, heat transfer to the lattice and electron-hole recombination. The
measured electron-hole () recombination time is 12--26 ps and ambipolar
diffusivity is 18--40 cm/s for carrier excitation up to . By comparing the heating of the front and back sides of the
film, we put lower limits on the rate of heat transfer to the lattice, and by
observing the decay of the plasma at the back of the film, we estimate the
timescale of electron-hole recombination. We interpret each of these timescales
within a common framework of electron-phonon scattering and find qualitative
agreement between the various relaxation times observed. We find that the
carrier density is not determined by the plasma temperature after a few
picoseconds. The diffusion and recombination become nonlinear with initial
excitation
Variational quantum Monte Carlo calculations for solid surfaces
Quantum Monte Carlo methods have proven to predict atomic and bulk properties
of light and non-light elements with high accuracy. Here we report on the first
variational quantum Monte Carlo (VMC) calculations for solid surfaces. Taking
the boundary condition for the simulation from a finite layer geometry, the
Hamiltonian, including a nonlocal pseudopotential, is cast in a layer resolved
form and evaluated with a two-dimensional Ewald summation technique. The exact
cancellation of all Jellium contributions to the Hamiltonian is ensured. The
many-body trial wave function consists of a Slater determinant with
parameterized localized orbitals and a Jastrow factor with a common two-body
term plus a new confinement term representing further variational freedom to
take into account the existence of the surface. We present results for the
ideal (110) surface of Galliumarsenide for different system sizes. With the
optimized trial wave function, we determine some properties related to a solid
surface to illustrate that VMC techniques provide standard results under full
inclusion of many-body effects at solid surfaces.Comment: 9 pages with 2 figures (eps) included, Latex 2.09, uses REVTEX style,
submitted to Phys. Rev.
Optimization of inhomogeneous electron correlation factors in periodic solids
A method is presented for the optimization of one-body and inhomogeneous
two-body terms in correlated electronic wave functions of Jastrow-Slater type.
The most general form of inhomogeneous correlation term which is compatible
with crystal symmetry is used and the energy is minimized with respect to all
parameters using a rapidly convergent iterative approach, based on Monte Carlo
sampling of the energy and fitting energy fluctuations. The energy minimization
is performed exactly within statistical sampling error for the energy
derivatives and the resulting one- and two-body terms of the wave function are
found to be well-determined. The largest calculations performed require the
optimization of over 3000 parameters. The inhomogeneous two-electron
correlation terms are calculated for diamond and rhombohedral graphite. The
optimal terms in diamond are found to be approximately homogeneous and
isotropic over all ranges of electron separation, but exhibit some
inhomogeneity at short- and intermediate-range, whereas those in graphite are
found to be homogeneous at short-range, but inhomogeneous and anisotropic at
intermediate- and long-range electron separation.Comment: 23 pages, 15 figures, 1 table, REVTeX4, submitted to PR
Monte Carlo Simulations with Indefinite and Complex-Valued Measures
A method is presented to tackle the sign problem in the simulations of
systems having indefinite or complex-valued measures. In general, this new
approach is shown to yield statistical errors smaller than the crude Monte
Carlo using absolute values of the original measures. Exactly solvable,
one-dimensional Ising models with complex temperature and complex activity
illustrate the considerable improvements and the workability of the new method
even when the crude one fails.Comment: 10 A4 pages, postscript (140K), UM-P-93-7
Adaptive Sampling Approach to the Negative Sign Problem in the Auxiliary Field Quantum Monte Carlo Method
We propose a new sampling method to calculate the ground state of interacting
quantum systems. This method, which we call the adaptive sampling quantum monte
carlo (ASQMC) method utilises information from the high temperature density
matrix derived from the monte carlo steps. With the ASQMC method, the negative
sign ratio is greatly reduced and it becomes zero in the limit
goes to zero even without imposing any constraint such like the constraint path
(CP) condition. Comparisons with numerical results obtained by using other
methods are made and we find the ASQMC method gives accurate results over wide
regions of physical parameters values.Comment: 8 pages, 7 figure
Roundoff-induced Coalescence of Chaotic Trajectories
Numerical experiments recently discussed in the literature show that
identical nonlinear chaotic systems linked by a common noise term (or signal)
may synchronize after a finite time. We study the process of synchronization as
function of precision of calculations. Two generic behaviors of the average
coalescence time are identified: exponential or linear. In both cases no
synchronization occurs if iterations are done with {\em infinite} precision.Comment: 6 pages, 3 postscript figures, to be published in Phys. Rev.
Crowdsourcing Cybersecurity: Cyber Attack Detection using Social Media
Social media is often viewed as a sensor into various societal events such as
disease outbreaks, protests, and elections. We describe the use of social media
as a crowdsourced sensor to gain insight into ongoing cyber-attacks. Our
approach detects a broad range of cyber-attacks (e.g., distributed denial of
service (DDOS) attacks, data breaches, and account hijacking) in an
unsupervised manner using just a limited fixed set of seed event triggers. A
new query expansion strategy based on convolutional kernels and dependency
parses helps model reporting structure and aids in identifying key event
characteristics. Through a large-scale analysis over Twitter, we demonstrate
that our approach consistently identifies and encodes events, outperforming
existing methods.Comment: 13 single column pages, 5 figures, submitted to KDD 201
Optical probing of ultrafast electronic decay in Bi and Sb with slow phonons
Illumination with laser sources leads to the creation of excited electronic states of particular symmetries, which can drive isosymmetric vibrations. Here, we use a combination of ultrafast stimulated and cw spontaneous Raman scattering to determine the lifetime of A(1g) and E-g electronic coherences in Bi and Sb. Our results both shed new light on the mechanisms of coherent phonon generation and represent a novel way to probe extremely fast electron decoherence rates. The E-g state, resulting from an unequal distribution of carriers in three equivalent band regions, is extremely short lived. Consistent with theory, the lifetime of its associated driving force reaches values as small as 2 (6) fs for Bi (Sb) at 300 K. DOI: 10.1103/PhysRevLett.110.04740
Photoinduced suppression of the ferroelectric instability in PbTe
The interactions between electrons and phonons drive a large array of
technologically relevant material properties including ferroelectricity,
thermoelectricity, and phase-change behaviour. In the case of many group IV-VI,
V, and related materials, these interactions are strong and the materials exist
near electronic and structural phase transitions. Their close proximity to
phase instability produces a fragile balance among the various properties. The
prototypical example is PbTe whose incipient ferroelectric behaviour has been
associated with large phonon anharmonicity and thermoelectricity. Experimental
measurements on PbTe reveal anomalous lattice dynamics, especially in the soft
transverse optical phonon branch. This has been interpreted in terms of both
giant anharmonicity and local symmetry breaking due to off-centering of the Pb
ions. The observed anomalies have prompted renewed theoretical and
computational interest, which has in turn revived focus on the extent that
electron-phonon interactions drive lattice instabilities in PbTe and related
materials. Here, we use Fourier-transform inelastic x-ray scattering (FT-IXS)
to show that photo-injection of free carriers stabilizes the paraelectric
state. With support from constrained density functional theory (CDFT)
calculations, we find that photoexcitation weakens the long-range forces along
the cubic direction tied to resonant bonding and incipient ferroelectricity.
This demonstrates the importance of electronic states near the band edges in
determining the equilibrium structure.Comment: 9 page, 3 figure
Transition to Stochastic Synchronization in Spatially Extended Systems
Spatially extended dynamical systems, namely coupled map lattices, driven by
additive spatio-temporal noise are shown to exhibit stochastic synchronization.
In analogy with low-dymensional systems, synchronization can be achieved only
if the maximum Lyapunov exponent becomes negative for sufficiently large noise
amplitude. Moreover, noise can suppress also the non-linear mechanism of
information propagation, that may be present in the spatially extended system.
A first example of phase transition is observed when both the linear and the
non-linear mechanisms of information production disappear at the same critical
value of the noise amplitude. The corresponding critical properties can be
hardly identified numerically, but some general argument suggests that they
could be ascribed to the Kardar-Parisi-Zhang universality class. Conversely,
when the non-linear mechanism prevails on the linear one, another type of phase
transition to stochastic synchronization occurs. This one is shown to belong to
the universality class of directed percolation.Comment: 21 pages, Latex - 14 EPS Figs - To appear on Physical Review
- …
