3,266 research outputs found

    Free-carrier relaxation and lattice heating in photoexcited bismuth thin films

    Full text link
    We report ultrafast surface pump and interface probe experiments on photoexcited carrier transport across single crystal bismuth films on sapphire. The film thickness is sufficient to separate carrier dynamics from lattice heating and strain, allowing us to investigate the time-scales of momentum relaxation, heat transfer to the lattice and electron-hole recombination. The measured electron-hole (ehe-h) recombination time is 12--26 ps and ambipolar diffusivity is 18--40 cm2^{2}/s for carrier excitation up to 1019cm3\sim 10^{19} \text{cm}^{-3}. By comparing the heating of the front and back sides of the film, we put lower limits on the rate of heat transfer to the lattice, and by observing the decay of the plasma at the back of the film, we estimate the timescale of electron-hole recombination. We interpret each of these timescales within a common framework of electron-phonon scattering and find qualitative agreement between the various relaxation times observed. We find that the carrier density is not determined by the ehe-h plasma temperature after a few picoseconds. The diffusion and recombination become nonlinear with initial excitation 1020cm3\gtrsim 10^{20} \text{cm}^{-3}

    Variational quantum Monte Carlo calculations for solid surfaces

    Full text link
    Quantum Monte Carlo methods have proven to predict atomic and bulk properties of light and non-light elements with high accuracy. Here we report on the first variational quantum Monte Carlo (VMC) calculations for solid surfaces. Taking the boundary condition for the simulation from a finite layer geometry, the Hamiltonian, including a nonlocal pseudopotential, is cast in a layer resolved form and evaluated with a two-dimensional Ewald summation technique. The exact cancellation of all Jellium contributions to the Hamiltonian is ensured. The many-body trial wave function consists of a Slater determinant with parameterized localized orbitals and a Jastrow factor with a common two-body term plus a new confinement term representing further variational freedom to take into account the existence of the surface. We present results for the ideal (110) surface of Galliumarsenide for different system sizes. With the optimized trial wave function, we determine some properties related to a solid surface to illustrate that VMC techniques provide standard results under full inclusion of many-body effects at solid surfaces.Comment: 9 pages with 2 figures (eps) included, Latex 2.09, uses REVTEX style, submitted to Phys. Rev.

    Optimization of inhomogeneous electron correlation factors in periodic solids

    Full text link
    A method is presented for the optimization of one-body and inhomogeneous two-body terms in correlated electronic wave functions of Jastrow-Slater type. The most general form of inhomogeneous correlation term which is compatible with crystal symmetry is used and the energy is minimized with respect to all parameters using a rapidly convergent iterative approach, based on Monte Carlo sampling of the energy and fitting energy fluctuations. The energy minimization is performed exactly within statistical sampling error for the energy derivatives and the resulting one- and two-body terms of the wave function are found to be well-determined. The largest calculations performed require the optimization of over 3000 parameters. The inhomogeneous two-electron correlation terms are calculated for diamond and rhombohedral graphite. The optimal terms in diamond are found to be approximately homogeneous and isotropic over all ranges of electron separation, but exhibit some inhomogeneity at short- and intermediate-range, whereas those in graphite are found to be homogeneous at short-range, but inhomogeneous and anisotropic at intermediate- and long-range electron separation.Comment: 23 pages, 15 figures, 1 table, REVTeX4, submitted to PR

    Monte Carlo Simulations with Indefinite and Complex-Valued Measures

    Full text link
    A method is presented to tackle the sign problem in the simulations of systems having indefinite or complex-valued measures. In general, this new approach is shown to yield statistical errors smaller than the crude Monte Carlo using absolute values of the original measures. Exactly solvable, one-dimensional Ising models with complex temperature and complex activity illustrate the considerable improvements and the workability of the new method even when the crude one fails.Comment: 10 A4 pages, postscript (140K), UM-P-93-7

    Adaptive Sampling Approach to the Negative Sign Problem in the Auxiliary Field Quantum Monte Carlo Method

    Full text link
    We propose a new sampling method to calculate the ground state of interacting quantum systems. This method, which we call the adaptive sampling quantum monte carlo (ASQMC) method utilises information from the high temperature density matrix derived from the monte carlo steps. With the ASQMC method, the negative sign ratio is greatly reduced and it becomes zero in the limit Δτ\Delta \tau goes to zero even without imposing any constraint such like the constraint path (CP) condition. Comparisons with numerical results obtained by using other methods are made and we find the ASQMC method gives accurate results over wide regions of physical parameters values.Comment: 8 pages, 7 figure

    Roundoff-induced Coalescence of Chaotic Trajectories

    Full text link
    Numerical experiments recently discussed in the literature show that identical nonlinear chaotic systems linked by a common noise term (or signal) may synchronize after a finite time. We study the process of synchronization as function of precision of calculations. Two generic behaviors of the average coalescence time are identified: exponential or linear. In both cases no synchronization occurs if iterations are done with {\em infinite} precision.Comment: 6 pages, 3 postscript figures, to be published in Phys. Rev.

    Crowdsourcing Cybersecurity: Cyber Attack Detection using Social Media

    Full text link
    Social media is often viewed as a sensor into various societal events such as disease outbreaks, protests, and elections. We describe the use of social media as a crowdsourced sensor to gain insight into ongoing cyber-attacks. Our approach detects a broad range of cyber-attacks (e.g., distributed denial of service (DDOS) attacks, data breaches, and account hijacking) in an unsupervised manner using just a limited fixed set of seed event triggers. A new query expansion strategy based on convolutional kernels and dependency parses helps model reporting structure and aids in identifying key event characteristics. Through a large-scale analysis over Twitter, we demonstrate that our approach consistently identifies and encodes events, outperforming existing methods.Comment: 13 single column pages, 5 figures, submitted to KDD 201

    Optical probing of ultrafast electronic decay in Bi and Sb with slow phonons

    Get PDF
    Illumination with laser sources leads to the creation of excited electronic states of particular symmetries, which can drive isosymmetric vibrations. Here, we use a combination of ultrafast stimulated and cw spontaneous Raman scattering to determine the lifetime of A(1g) and E-g electronic coherences in Bi and Sb. Our results both shed new light on the mechanisms of coherent phonon generation and represent a novel way to probe extremely fast electron decoherence rates. The E-g state, resulting from an unequal distribution of carriers in three equivalent band regions, is extremely short lived. Consistent with theory, the lifetime of its associated driving force reaches values as small as 2 (6) fs for Bi (Sb) at 300 K. DOI: 10.1103/PhysRevLett.110.04740

    Photoinduced suppression of the ferroelectric instability in PbTe

    Full text link
    The interactions between electrons and phonons drive a large array of technologically relevant material properties including ferroelectricity, thermoelectricity, and phase-change behaviour. In the case of many group IV-VI, V, and related materials, these interactions are strong and the materials exist near electronic and structural phase transitions. Their close proximity to phase instability produces a fragile balance among the various properties. The prototypical example is PbTe whose incipient ferroelectric behaviour has been associated with large phonon anharmonicity and thermoelectricity. Experimental measurements on PbTe reveal anomalous lattice dynamics, especially in the soft transverse optical phonon branch. This has been interpreted in terms of both giant anharmonicity and local symmetry breaking due to off-centering of the Pb ions. The observed anomalies have prompted renewed theoretical and computational interest, which has in turn revived focus on the extent that electron-phonon interactions drive lattice instabilities in PbTe and related materials. Here, we use Fourier-transform inelastic x-ray scattering (FT-IXS) to show that photo-injection of free carriers stabilizes the paraelectric state. With support from constrained density functional theory (CDFT) calculations, we find that photoexcitation weakens the long-range forces along the cubic direction tied to resonant bonding and incipient ferroelectricity. This demonstrates the importance of electronic states near the band edges in determining the equilibrium structure.Comment: 9 page, 3 figure

    Transition to Stochastic Synchronization in Spatially Extended Systems

    Full text link
    Spatially extended dynamical systems, namely coupled map lattices, driven by additive spatio-temporal noise are shown to exhibit stochastic synchronization. In analogy with low-dymensional systems, synchronization can be achieved only if the maximum Lyapunov exponent becomes negative for sufficiently large noise amplitude. Moreover, noise can suppress also the non-linear mechanism of information propagation, that may be present in the spatially extended system. A first example of phase transition is observed when both the linear and the non-linear mechanisms of information production disappear at the same critical value of the noise amplitude. The corresponding critical properties can be hardly identified numerically, but some general argument suggests that they could be ascribed to the Kardar-Parisi-Zhang universality class. Conversely, when the non-linear mechanism prevails on the linear one, another type of phase transition to stochastic synchronization occurs. This one is shown to belong to the universality class of directed percolation.Comment: 21 pages, Latex - 14 EPS Figs - To appear on Physical Review
    corecore