21,363 research outputs found

    String Breaking in Four Dimensional Lattice QCD

    Get PDF
    Virtual quark pair screening leads to breaking of the string between fundamental representation quarks in QCD. For unquenched four dimensional lattice QCD, this (so far elusive) phenomenon is studied using the recently developed truncated determinant algorithm (TDA). The dynamical configurations were generated on an Athlon 650 MHz PC. Quark eigenmodes up to 420 MeV are included exactly in these TDA studies performed at low quark mass on large coarse (but O(a2a^2) improved) lattices. A study of Wilson line correlators in Coulomb gauge extracted from an ensemble of 1000 two-flavor dynamical configurations reveals evidence for flattening of the string tension at distances R ≥\geq approximately 1 fm.Comment: 16 pages, 5 figures, Latex (deleted extraneous eps figure file

    Modular Forms on the Double Half-Plane

    Full text link
    We formulate a notion of modular form on the double half-plane for half-integral weights and explain its relationship to the usual notion of modular form. The construction we provide is compatible with certain physical considerations due to the second author.Comment: 17 pages: Minor corrections in text (due to a helpful referee), updated affiliations. Accepted for publication in the International Journal for Number Theory (IJNT

    Umbral Moonshine and the Niemeier Lattices

    Get PDF
    In this paper we relate umbral moonshine to the Niemeier lattices: the 23 even unimodular positive-definite lattices of rank 24 with non-trivial root systems. To each Niemeier lattice we attach a finite group by considering a naturally defined quotient of the lattice automorphism group, and for each conjugacy class of each of these groups we identify a vector-valued mock modular form whose components coincide with mock theta functions of Ramanujan in many cases. This leads to the umbral moonshine conjecture, stating that an infinite-dimensional module is assigned to each of the Niemeier lattices in such a way that the associated graded trace functions are mock modular forms of a distinguished nature. These constructions and conjectures extend those of our earlier paper, and in particular include the Mathieu moonshine observed by Eguchi-Ooguri-Tachikawa as a special case. Our analysis also highlights a correspondence between genus zero groups and Niemeier lattices. As a part of this relation we recognise the Coxeter numbers of Niemeier root systems with a type A component as exactly those levels for which the corresponding classical modular curve has genus zero.Comment: 181 pages including 95 pages of Appendices; journal version, minor typos corrected, Research in the Mathematical Sciences, 2014, vol.

    A study of resistojet systems directed to the space station/base Final report

    Get PDF
    Biowaste resistojet subsystem for integrated environmental control and life support of space statio

    Unquenched QCD with Light Quarks

    Get PDF
    We present recent results in unquenched lattice QCD with two degenerate light sea quarks using the truncated determinant approximation (TDA). In the TDA the infrared modes contributing to the quark determinant are computed exactly up to some cutoff in quark off-shellness (typically 2ΛQCD\Lambda_{QCD}). This approach allows simulations to be performed at much lighter quark masses than possible with conventional hybrid MonteCarlo techniques. Results for the static energy and topological charge distributions are presented using a large ensemble generated on very coarse (64^4) but physically large lattices. Preliminary results are also reported for the static energy and meson spectrum on 103^3x20 lattices (lattice scale a−1a^{-1}=1.15 GeV) at quark masses corresponding to pions of mass ≤\leq 200 MeV. Using multiboson simulation to compute the ultraviolet part of the quark determinant the TDA approach becomes an exact with essentially no increase in computational effort. Some preliminary results using this fully unquenched algorithm are presented.Comment: LateX, 39 pages, 16 eps figures, 1 ps figur

    A Damping of the de Haas-van Alphen Oscillations in the superconducting state

    Full text link
    Deploying a recently developed semiclassical theory of quasiparticles in the superconducting state we study the de Haas-van Alphen effect. We find that the oscillations have the same frequency as in the normal state but their amplitude is reduced. We find an analytic formulae for this damping which is due to tunnelling between semiclassical quasiparticle orbits comprising both particle-like and hole-like segments. The quantitative predictions of the theory are consistent with the available data.Comment: 7 pages, 5 figure

    Quantum Dynamics of the Slow Rollover Transition in the Linear Delta Expansion

    Full text link
    We apply the linear delta expansion to the quantum mechanical version of the slow rollover transition which is an important feature of inflationary models of the early universe. The method, which goes beyond the Gaussian approximation, gives results which stay close to the exact solution for longer than previous methods. It provides a promising basis for extension to a full field theoretic treatment.Comment: 12 pages, including 4 figure
    • …
    corecore