1,335 research outputs found
Mechanical Mixing in Nonlinear Nanomechanical Resonators
Nanomechanical resonators, machined out of Silicon-on-Insulator wafers, are
operated in the nonlinear regime to investigate higher-order mechanical mixing
at radio frequencies, relevant to signal processing and nonlinear dynamics on
nanometer scales. Driven by two neighboring frequencies the resonators generate
rich power spectra exhibiting a multitude of satellite peaks. This nonlinear
response is studied and compared to -order perturbation theory and
nonperturbative numerical calculations.Comment: 5 pages, 7 figure
Influence of chopped laser light onto the electronic transport through atomic-sized contacts
This article reports on the influence of laser irradiation onto the
electrical conductance of gold nanocontacts established with the mechanically
controllable breakjunction technique (MCB). We concentrate here on the study of
reversible conductance changes which can be as high as 200%. We investigate the
dependence on the initial conductance of the contacts, the wavelength, the
intensity and position of the laser spot with respect to the sample. Under most
conditions an enhancement of the conductance is observed. We discuss several
physical mechanisms which might contribute to the observed effect including
thermal expansion, rectification and photon-assisted transport. We conclude
that thermal expansion is not the dominating one.Comment: 20 pages with 7 figures; conference contribution on the 9th near
field optics conference 2006 in Lausanne, Switzerland; accepted by the
Journal of Microscop
Different types of integrability and their relation to decoherence in central spin models
We investigate the relation between integrability and decoherence in central
spin models with more than one central spin. We show that there is a transition
between integrability ensured by the Bethe ansatz and integrability ensured by
complete sets of commuting operators. This has a significant impact on the
decoherence properties of the system, suggesting that it is not necessarily
integrability or nonintegrability which is related to decoherence, but rather
its type or a change from integrability to nonintegrability.Comment: 4 pages, 3 figure
A nanomechanical resonator shuttling single electrons at radio frequencies
We observe transport of electrons through a metallic island on the tip of a
nanomechanical pendulum. The resulting tunneling current shows distinct
features corresponding to the discrete mechanical eigenfrequencies of the
pendulum. We report on measurements covering the temperature range from 300 K
down to 4.2 K. We explain the I-V curve, which differs from previous
theoretical predictions, with model calculations based on a Master equation
approach.Comment: 5 pages, 4 jpeg-figure
Mechanical Cooper pair transportation as a source of long distance superconducting phase coherence
Transportation of Cooper-pairs by a movable single Cooper-pair-box placed
between two remote superconductors is shown to establish coherent coupling
between them. This coupling is due to entanglement of the movable box with the
leads and is manifested in the supression of quantum fluctuations of the
relative phase of the order parameters of the leads. It can be probed by
attaching a high resistance Josephson junction between the leads and measuring
the current through this junction. The current is suppressed with increasing
temperature.Comment: 4 pages, 4 figures, RevTeX; Updated version, typos correcte
Electromechanics of charge shuttling in dissipative nanostructures
We investigate the current-voltage (IV) characteristics of a model
single-electron transistor where mechanical motion, subject to strong
dissipation, of a small metallic grain is possible. The system is studied both
by using Monte Carlo simulations and by using an analytical approach. We show
that electromechanical coupling results in a highly nonlinear IV-curve. For
voltages above the Coulomb blockade threshold, two distinct regimes of charge
transfer occur: At low voltages the system behave as a static asymmetric double
junction and tunneling is the dominating charge transfer mechanism. At higher
voltages an abrupt transition to a new shuttle regime appears, where the grain
performs an oscillatory motion back and forth between the leads. In this regime
the current is mainly mediated by charges that are carried on the grain as it
moves from one lead to the other.Comment: 8 pages, 10 figures, final version to be published in PR
Nanomechanical resonators operating as charge detectors in the nonlinear regime
We present measurements on nanomechanical resonators machined from
Silicon-on-Insulator substrates. The resonators are designed as freely
suspended Au/Si beams of lengths on the order of 1 - 4 um and a thickness of
200 nm. The beams are driven into nonlinear response by an applied modulation
at radio frequencies and a magnetic field in plane. The strong hysteresis of
the magnetomotive response allows sensitive charge detection by varying the
electrostatic potential of a gate electrode.Comment: 8 pages, 6 figure
Influence of nano-mechanical properties on single electron tunneling: A vibrating Single-Electron Transistor
We describe single electron tunneling through molecular structures under the
influence of nano-mechanical excitations. We develop a full quantum mechanical
model, which includes charging effects and dissipation, and apply it to the
vibrating C single electron transistor experiment by Park {\em et al.}
{[Nature {\bf 407}, 57 (2000)].} We find good agreement and argue vibrations to
be essential to molecular electronic systems. We propose a mechanism to realize
negative differential conductance using local bosonic excitations.Comment: 7 pages, 6 figure
Impact of van der Waals forces on the classical shuttle instability
The effects of including the van der Waals interaction in the modelling of
the single electron shuttle have been investigated numerically. It is
demonstrated that the relative strength of the vdW-forces and the elastic
restoring forces determine the characteristics of the shuttle instability. In
the case of weak elastic forces and low voltages the grain is trapped close to
one lead, and this trapping can be overcome by Coulomb forces by applying a
bias voltage larger than a threshold voltage . This allows for
grain motion leading to an increase in current by several orders of magnitude
above the transition voltage . Associated with the process is also
hysteresis in the I-V characteristics.Comment: minor revisions, updated references, Article published in Phys. Rev.
B 69, 035309 (2004
Binary trees, coproducts, and integrable systems
We provide a unified framework for the treatment of special integrable
systems which we propose to call "generalized mean field systems". Thereby
previous results on integrable classical and quantum systems are generalized.
Following Ballesteros and Ragnisco, the framework consists of a unital algebra
with brackets, a Casimir element, and a coproduct which can be lifted to higher
tensor products. The coupling scheme of the iterated tensor product is encoded
in a binary tree. The theory is exemplified by the case of a spin octahedron.Comment: 15 pages, 6 figures, v2: minor correction in theorem 1, two new
appendices adde
- …
