86 research outputs found

    Study of the factors affecting the karst volume assessment in the Dead Sea sinkhole problem using microgravity field analysis and 3-D modeling

    Get PDF
    Thousands of sinkholes have appeared in the Dead Sea (DS) coastal area in Israel and Jordan during two last decades. The sinkhole development is recently associated with the buried evaporation karst at the depth of 25–50 m from earth's surface caused by the drop of the DS level at the rate of 0.8–1.0 m/yr. Drop in the Dead Sea level has changed hydrogeological conditions in the subsurface and caused surface to collapse. The pre-existing cavern was detected using microgravity mapping in the Nahal Hever South site where seven sinkholes of 1–2 m diameter had been opened. About 5000 gravity stations were observed in the area of 200×200 m<sup>2</sup> by the use of Scintrex CG-3M AutoGrav gravimeter. Besides the conventional set of corrections applied in microgravity investigations, a correction for a strong gravity horizontal gradient (DS Transform Zone negative gravity anomaly influence) was inserted. As a result, residual gravity anomaly of –(0.08÷0.14) mGal was revealed. The gravity field analysis was supported by resistivity measurements. We applied the Emigma 7.8 gravity software to create the 3-D physical-geological models of the sinkholes development area. The modeling was confirmed by application of the <i>GSFC</i> program developed especially for 3-D combined gravity-magnetic modeling in complicated environments. Computed numerous gravity models verified an effective applicability of the microgravity technology for detection of karst cavities and estimation of their physical-geological parameters. A volume of the karst was approximately estimated as 35 000 m<sup>3</sup>. The visual analysis of large sinkhole clusters have been forming at the microgravity anomaly site, confirmed the results of microgravity mapping and 3-D modeling

    Removing Regional Trends in Microgravity in Complex Environments: Testing on 3D Model and Field Investigations in the Eastern Dead Sea Coast (Jordan)

    Get PDF
    Microgravity investigations are now recognized as a powerful tool for subsurface imaging and especially for the localization of underground karsts. However numerous natural (geological), technical, and environmental factors interfere with microgravity survey processing and interpretation. One of natural factors that causes the most disturbance in complex geological environments is the influence of regional trends. In the Dead Sea coastal areas the influence of regional trends can exceed residual gravity effects by some tenfold. Many widely applied methods are unable to remove regional trends with sufficient accuracy. We tested number of transformation methods (including computing gravity field derivatives, self-adjusting and adaptive filtering, Fourier series, wavelet, and other procedures) on a 3D model (complicated by randomly distributed noise), and field investigations were carried out in Ghor Al-Haditha (the eastern side of the Dead Sea in Jordan). We show that the most effective methods for regional trend removal (at least for the theoretical and field cases here) are the bilinear saddle and local polynomial regressions. Application of these methods made it possible to detect the anomalous gravity effect from buried targets in the theoretical model and to extract the local gravity anomaly at the Ghor Al-Haditha site. The local anomaly was utilized for 3D gravity modeling to construct a physical-geological model (PGM)

    Geothermal heat flux in the Amundsen Sea sector of West Antarctica: New insights from temperature measurements, depth to the bottom of the magnetic source estimation, and thermal modeling

    Get PDF
    Focused research on the Pine Island and Thwaites glaciers, which drain the West Antarctic Ice Shelf (WAIS) into the Amundsen Sea Embayment (ASE), revealed strong signs of instability in recent decades that result from variety of reasons, such as inflow of warmer ocean currents and reverse bedrock topogra- phy, and has been established as the Marine Ice Sheet Instability hypothesis. Geothermal heat flux (GHF) is a poorly constrained parameter in Antarctica and suspected to affect basal conditions of ice sheets, i.e., basal melting and subglacial hydrology. Thermomechanical models demonstrate the influential boundary condition of geothermal heat flux for (paleo) ice sheet stability. Due to a complex tectonic and magmatic history of West Antarctica, the region is suspected to exhibit strong heterogeneous geothermal heat flux variations. We present an approach to investigate ranges of realistic heat fluxes in the ASE by different methods, discuss direct observations, and 3-D numerical models that incorporate boundary conditions derived from various geophysical studies, including our new Depth to the Bottom of the Magnetic Source (DBMS) estimates. Our in situ temperature measurements at 26 sites in the ASE more than triples the number of direct GHF observations in West Antarctica. We demonstrate by our numerical 3-D models that GHF spatially varies from 68 up to 110 mW m-2

    Estimating Secondary Earthquake Aftershocks from Tsunamis

    No full text
    Nonlinear solitary waves influence the Earth’s crust because wave pressure on the ocean bottom contains non-hydrostatic components. Our physical-mathematical model allows us to calculate the surplus super-hydrostatic pressure on the Earth’s crust. It depends on the amplitudes of solitary waves and the depth of an ocean. The surplus wave pressure averages 50% from hydrostatic pressure on the shallow ocean shelves. Thus, the solitary wave’s tsunami class can provoke novel (repeated) earthquakes (or landslides) because surplus stresses affect the seismic focus. Theoretical results and experimental physical modeling of soliton waves have shown good agreement. A calculated example of the mega-tsunami in Lituya Bay and a described example of Dickson Fjord (AK, USA) indicate changes in the dynamic pressure after the onset of the tsunami. The presented studies demonstrate a first attempt at creating a numerical model of this phenomenon

    Nonlinear Model of Coastal Flooding by a Highly Turbulent Tsunami

    No full text
    AbstractWhen a tsunami wave comes from ocean and propagates through the shelf, it is very important to predict several dangerous factors: (a) maximum flooding of the coast, (b) tsunami wave height on the coast, (c) velocity of the tsunami front propagation through the coast, and (d) time of tsunami arriving at a given point in the coast and around it. In this study we study the separate case where the angle of inclination α of the seacoast is equal to zero. A linear solution of this problem is unsatisfactory since it gives an infinite rate of the coastal inundation that means the coast is flooded instantly and without a frontal boundary. In this study, we propose a principally new exact analytical solution of this problem based on nonlinear theory for the reliable recognizing these essential tsunami characteristics. The obtained formulas indicate that the tsunami wave can be stopped (or very strongly eliminated) in the shelf zone until approaching the shoreline. For this aim, it is necessary to artificially raising several dozens of bottom protrusions to the level of the calm water.</jats:p

    Application of Multifocusing Seismic Processing to GPR Data Analysis

    No full text

    Characteristics of high-frequency attenuation in the Dead Sea Basin

    Full text link

    The Behavior of Nonlinear Tsunami Waves Running on the Shelf

    No full text
    The problem of creating methods for calculating tsunami parameters and predicting these dangerous events is currently being solved by integrating the equations of the theory of water waves. Both numerical methods and powerful computers are used, as well as analytical solutions. The essential stage is the stage of the tsunami reaching the shelf and shallow coastal waters. The tsunami amplitude increases here, and nonlinear effects become important. Nonlinearity excludes the solution&rsquo;s unicity and the superposition principle&rsquo;s fulfillment. The nonlinear theory can have many solutions, depending on various external conditions; there could be nontrivial ones. In this article, we explore the properties of several nonlinear solutions. With their help, we can find the maximum possible amplitude of tsunami waves when approaching the coast and estimate the seismological parameters of an earthquake-generating tsunami
    corecore