5 research outputs found

    Magnetic Nanoparticles Based on Natural Silica as A Methyl Ester Forming Acid Catalyst

    Full text link
    Natural silica has advantages in various fields such as catalysts, because it is easily obtained and applied in the chemical reaction process. The synthesis of natural silica-based magnetic acid catalyst, MSNP/SO42- aims to obtain a large yield from the reaction process between oleic acid and methanol to form methyl ester. Natural silica obtained from geothermal waste was washed with distilled water, then sol gel method was applied at pH of 4-6 to obtain SiO2 nanoparticles. FeCl3 was added to achieve the magnetic properties, and the cetyl trimethyl ammonium bromide (CTAB) is varied in order to attain optimal mesoporous size. Brunauer emmet teller (BET) results showed optimum results from 1: 2 molarity ratio between silica and CTAB with a surface area of 520.94 m2/g. The acidic properties were obtained by immersion using H2SO4 0.5 M. The catalyst were tested for the acidic and magnetic properties using temperature programmed desorption ammonia (TPD-NH3) and vibrating sample magnetometer (VSM) characterization resulting intotal acidity of 0.2488 mmol/g and. softmagnetic type, respectively. The BET surface area of the sulfate modified into MSNP/SO42-, was decreased by 114.44 m2/g. Application of MSNP/SO42- as a catalyst for forming methyl esters obtained a percentage of 85.41% yield based on the gas chromatography mass spectrometry (GC- MS) results

    Tooth wear against ceramic crowns in posterior region: a systematic literature review

    No full text
    The objective of this systematic review was to assess tooth wear against ceramic crowns in posterior region in vitro and in vivo. An electronic PubMed search was conducted to identify studies on tooth wear against ceramic crowns in posterior region. The selected studies were analyzed in regard to type of crowns, natural antagonist, measuring protocol and outcome. From a yield of 1 000 titles, 43 articles were selected for full-text analysis; finally, no in vitro and only five in vivo studies met the inclusion criteria. As there is heterogeneity in design, used measuring method, ceramics and analysis-form, a meta-analysis was not possible. Results of these studies are very controversial which makes a scientifically valid comparison impossible. This review indicated that some all-ceramic crowns are as wear friendly as metal-ceramic crowns. Up to now, it has been impossible to associate tooth wear with any specific causal agent. The role of ceramic surface treatment that might be responsible for the changing in rate of tooth wear seems undetermined as yet through clinical trials. The literature reveals that studies on this topic are subject to a substantial amount of bias. Therefore, additional clinical studies, properly designed to diminish bias, are warranted
    corecore