9 research outputs found
A Review of Non-Destructive Methods for Detection of Insect Infestation in Fruits and Vegetables
Insect damage in fruits and vegetables cause major production and economic losses in the agriculture and food industry worldwide. Monitoring of internal quality and detection of insect infestation in fruits and vegetables is critical for sustainable agriculture. Early detection of an infestation in fruits can facilitate the control of insects and the quarantine operations through proper post-harvest management strategies and can improve productivity. The present review recognizes the need for developing a rapid, cost-effective, and reliable insect infestation monitoring system that would lead to advancements in agriculture and food industry. In this paper, an overview of non-destructive detection insect damages in fruits and vegetables was presented, and the research and applications were discussed. This paper elaborated all of the post-harvest fruit infestation detection methods which are based on the following technologies: optical properties, machine vision technique, sonic properties, magnetic resonance imaging (MRI), thermal imaging, x-ray computed tomography and chemical chromatography. Also, the main challenges and limitations of non-destructive detection methods in the agricultural products quality assessment were also elucidated
Application of Acoustic Emission and Machine Learning to Detect Codling Moth Infested Apples
Incidence of codling moth (CM) (Cydia pomonella L.) infestation in apples has been a major concern in North America for decades. CM larvae bore deep into the fruit, making it unmarketable. An effective noninvasive method to detect larvae-infested apples is necessary to ensure that apples are CM-free in post-harvest processing. In this study, a novel approach using an acoustic emission (AE) system and subsequent machine learning methods was applied to classify larvae-infested apples from intact apples. \u27GoldRush‘ apples were infested with CM neonates and stored at the same conditions as intact apples. The AE system was used to collect the data emitted by 80 larvae-infested and intact apples in total. Eleven AE features that changed with signaling time were obtained with the AE system. For each feature, the area under the curve along the signaling time was calculated and used as an independent input variable for the machine learning algorithms, which included linear discriminant analysis (LDA) and ensemble method adaptive boosting. With signaling times ranging from 0.5 to 120 s, classification rates for infested versus intact apples ranged from 91% to 100% for the training set and from 83% to 100% for the test set. The quick signal collection and high classification accuracy obtained in this study show the potential of AE for detecting and classifying CM-infested apples
Application of Hyperspectral Imaging and Acoustic Emission Techniques for Apple Quality Prediction
There is a growing demand for developing effective non-destructive quality assessment methods with quick response, high accuracy, and low cost for fresh fruits. In this study, hyperspectral reflectance imaging (400 to 1000 nm) and acoustic emission (AE) tests were applied to ‘GoldRush‘ apples (total number, n = 180) to predict fruit firmness, total soluble solids (TSS), and surface color parameters (L*, a*, b*) during an eight-week storage period. Partial least squares (PLS) regression, least squares support vector machine (LS-SVM), and multivariate linear regression (MLR) methods were used to establish models to predict the quality attributes of the apples. The results showed that hyperspectral imaging (HSI) could accurately predict all the attributes except TSS, while the AE method was capable of predicting fruit firmness, b* color index, and TSS. Overall, HSI regression using PLS had better comprehensive ability for predicting firmness, TSS, and color parameters (L*, a*, b*) than AE, with correlation coefficients of prediction (rp) of 0.92, 0.41, 0.83, 0.87, and 0.94 and root mean square errors of prediction (RMSEP) of 4.32 (N), 1.78 (°Brix), 3.41, 2.28, and 4.29, respectively, while AE regression using LS-SVM gave rp values of 0.88, 0.74, 0.34, 0.37, and 0.81 and RMSEP values of 4.26 (N), 0.64 (°Brix), 4.69, 1.8, and 5.17 for firmness, TSS, and color parameters (L*, a*, b*), respectively. The results show the potential of these two non-destructive methods for predicting some of the quality attributes of apples
Non-destructive classification and quality evaluation of proso millet cultivars using NIR hyperspectral imaging with machine learning
Millet is a small-seeded cereal crop with big potential and remarkable characteristics such as high drought resistance, short growing time, low water footprint, and the ability to grow in acidic soil. There is a need to develop nondestructive methods for differentiation and evaluation of the quality attributes of different of proso millet cultivars grown in the U.S. Current methods of cultivar classification are either subjective or destructive, time consuming, not allowing for the whole population to be tested, and requiring trained operators and special equipment. In this study, the feasibility of using near-infrared (NIR) hyperspectral imaging (900-1700 nm) to predict the quality attributes of proso millet (Panicum miliaceum L.) seeds as well to classify its different cultivars was demonstrated. Ten different cultivars of proso millet variety, which are the most popular in the US, investigated in this study included Cerise, Cope, Earlybird, Huntsman, Minco, Plateau, Rise, Snowbird, Sunrise, and Sunup. To reduce the large dimensionality of the hyperspectral imaging, principal component analysis (PCA) was applied, and the first two principal components were used as imaging features for building the classification models. The Classification performance showed a test accuracy rates as high as 99% for classifying the different cultivars of proso millet using gradient tree boosting ensemble machine learning algorithm. Moreover, using the partial least squares regression (PLSR) the coefficient of determination (R2) for quality prediction of proso millet seeds were 0.87, 0.80, 0.83, 0.93, and 0.92 for moisture content, crude protein, crude fat, ash, and carbohydrate, respectively. The overall results indicate that NIR hyperspectral imaging could be used to non-destructively classify and predict the quality of proso millet seeds
Non-Destructive Technologies for Detecting Insect Infestation in Fruits and Vegetables under Postharvest Conditions: A Critical Review
In the last two decades, food scientists have attempted to develop new technologies that can improve the detection of insect infestation in fruits and vegetables under postharvest conditions using a multitude of non-destructive technologies. While consumers\u27 expectations for higher nutritive and sensorial value of fresh produce has increased over time, they have also become more critical on using insecticides or synthetic chemicals to preserve food quality from insects\u27 attacks or enhance the quality attributes of minimally processed fresh produce. In addition, the increasingly stringent quarantine measures by regulatory agencies for commercial import-export of fresh produce needs more reliable technologies for quickly detecting insect infestation in fruits and vegetables before their commercialization. For these reasons, the food industry investigates alternative and non-destructive means to improve food quality. Several studies have been conducted on the development of rapid, accurate, and reliable insect infestation monitoring systems to replace invasive and subjective methods that are often inefficient. There are still major limitations to the effective in-field, as well as postharvest on-line, monitoring applications. This review presents a general overview of current non-destructive techniques for the detection of insect damage in fruits and vegetables and discusses basic principles and applications. The paper also elaborates on the specific post-harvest fruit infestation detection methods, which include principles, protocols, specific application examples, merits, and limitations. The methods reviewed include those based on spectroscopy, imaging, acoustic sensing, and chemical interactions, with greater emphasis on the noninvasive methods. This review also discusses the current research gaps as well as the future research directions for non-destructive methods\u27 application in the detection and classification of insect infestation in fruits and vegetables
Nondestructive Detection of Codling Moth Infestation in Apples Using Pixel-Based NIR Hyperspectral Imaging with Machine Learning and Feature Selection
Codling moth (CM) (Cydia pomonella L.), a devastating pest, creates a serious issue for apple production and marketing in apple-producing countries. Therefore, effective nondestructive early detection of external and internal defects in CM-infested apples could remarkably prevent postharvest losses and improve the quality of the final product. In this study, near-infrared (NIR) hyperspectral reflectance imaging in the wavelength range of 900–1700 nm was applied to detect CM infestation at the pixel level for three organic apple cultivars, namely Gala, Fuji and Granny Smith. An effective region of interest (ROI) acquisition procedure along with different machine learning and data processing methods were used to build robust and high accuracy classification models. Optimal wavelength selection was implemented using sequential stepwise selection methods to build multispectral imaging models for fast and effective classification purposes. The results showed that the infested and healthy samples were classified at pixel level with up to 97.4% total accuracy for validation dataset using a gradient tree boosting (GTB) ensemble classifier, among others. The feature selection algorithm obtained a maximum accuracy of 91.6% with only 22 selected wavelengths. These findings indicate the high potential of NIR hyperspectral imaging (HSI) in detecting and classifying latent CM infestation in apples of different cultivars
Classification of Codling Moth-Infested Apples Using Sensor Data Fusion of Acoustic and Hyperspectral Features Coupled with Machine Learning
Codling moth (CM) is a major apple pest. Current manual method of detection is not very effective. The development of nondestructive monitoring and detection methods has the potential to reduce postharvest losses from CM infestation. Previous work from our group demonstrated the effectiveness of hyperspectral imaging (HSI) and acoustic methods as suitable techniques for nondestructive CM infestation detection and classification in apples. However, both have limitations that can be addressed by the strengths of the other. For example, acoustic methods are incapable of detecting external CM symptoms but can determine internal pest activities and morphological damage, whereas HSI is only capable of detecting the changes and damage to apple surfaces and up to a few mm inward; it cannot detect live CM activity in apples. This study investigated the possibility of sensor data fusion from HSI and acoustic signals to improve the detection of CM infestation in apples. The time and frequency domain acoustic features were combined with the spectral features obtained from the HSI, and various classification models were applied. The results showed that sensor data fusion using selected combined features (mid-level) from the sensor data and three apple varieties gave a high classification rate in terms of performance and reduced the model complexity with an accuracy up to 94% using the AdaBoost classifier, when only six acoustic and six HSI features were applied. This result affirms that the sensor fusion technique can improve CM infestation detection in pome fruits such as apples
Nondestructive Detection of Codling Moth Infestation in Apples Using Pixel-Based NIR Hyperspectral Imaging with Machine Learning and Feature Selection
Codling moth (CM) (Cydia pomonella L.), a devastating pest, creates a serious issue for apple production and marketing in apple-producing countries. Therefore, effective nondestructive early detection of external and internal defects in CM-infested apples could remarkably prevent postharvest losses and improve the quality of the final product. In this study, near-infrared (NIR) hyperspectral reflectance imaging in the wavelength range of 900–1700 nm was applied to detect CM infestation at the pixel level for three organic apple cultivars, namely Gala, Fuji and Granny Smith. An effective region of interest (ROI) acquisition procedure along with different machine learning and data processing methods were used to build robust and high accuracy classification models. Optimal wavelength selection was implemented using sequential stepwise selection methods to build multispectral imaging models for fast and effective classification purposes. The results showed that the infested and healthy samples were classified at pixel level with up to 97.4% total accuracy for validation dataset using a gradient tree boosting (GTB) ensemble classifier, among others. The feature selection algorithm obtained a maximum accuracy of 91.6% with only 22 selected wavelengths. These findings indicate the high potential of NIR hyperspectral imaging (HSI) in detecting and classifying latent CM infestation in apples of different cultivars