99 research outputs found
Determination of Anthocyaninsin Red Grape Juices Made From Different Varieties by HPLC
This study was conducted to determine the anthocyanin profiles of red grape juice. As research material, twelve different red grape varieties which were collected from the main producing regions in Turkey and red grape juice samples made from them were analyzed. The anthocyanins peaks on HPLC-chromatograms in red grapes were identified as cyanidin-3-glucoside, delphinidin-3-glucoside, malvidin-3-glucoside, peonidin-3-glucoside and petunidin-3-glucoside. According the results, the pre-dominant anthocyanins of red grape juice was malvidin-3-glucoside which was found between 21.77-277.54 mg/L. It was followed by peonidin-3-glucoside which was found between 3.05-74.26 mg/L and then cyanidin-3-glucoside which was found between 3.02-16.94 mg/L. Delphinidin-3-glucoside and petunidin-3-glucoside were not detected in most red grape juices.
This work is important to chemical description of local grape varieties and selection of suitable raw material for fruit juice industry
On the evolution of anomalous X-ray pulsars and soft gamma ray repeaters with fallback disks
We show that the period clustering of anomalous X-ray pulsars (AXPs) and soft
gamma-ray repeaters (SGRs), their X-ray luminosities, ages and statistics can
be explained with fallback disks with large initial specific angular momentum.
The disk evolution models are developed by comparison to self-similar
analytical models. The initial disk mass and angular momentum set the viscous
timescale. An efficient torque, with (1 - w^2) dependence on the fastness
parameter w leads to period clustering in the observed AXP-SGR period range
under a wide range of initial conditions. The timescale t_0 for the early
evolution of the fallback disk, and the final stages of fallback disk
evolution, when the disk becomes passive, are the crucial determinants of the
evolution. The disk becomes passive at temperatures around 100 K, which
provides a natural cutoff for the X-ray luminosity and defines the end of
evolution in the observable AXP and SGR phase. This low value for the minimum
temperature for active disk turbulence indicates that the fallback disks are
active up to a large radius greater than ~10^{12} cm. We find that transient
AXPs and SGRs are likely to be older than their persistent cousins. A fallback
disk with mass transfer rates corresponding to the low quiescent X-ray
luminosities of the transient sources in early evolutionary phases would have a
relatively lower initial mass, such that the mass-flow rate in the disk is not
sufficient for the inner disk to penetrate into the light cylinder of the young
neutron star, making mass accretion onto the neutron star impossible. The
transient AXP phase therefore must start later. The model results imply that
the transient AXP/SGRs, although older, are likely to be similar in number to
persistent sources (abridged).Comment: 42 pages, 22 figures. Accepted for publication in the Astrophysical
Journa
Spin-Down of the Long-Period Accreting Pulsar 4U 2206+54
4U 2206+54 is a high mass X-ray binary which has been suspected to contain a
neutron star accreting from the wind of its companion BD +53 2790. Reig et al.
have recently detected 5560 s period pulsations in both RXTE and INTEGRAL
observations which they conclude are due to the spin of the neutron star. We
present observations made with Suzaku which are contemporaneous with their RXTE
observation of this source. We find strong pulsations at a period of 5554 +/- 9
s in agreement with their results. We also present a reanalysis of BeppoSAX
observations of 4U 2206+54 made in 1998, in which we find strong pulsations at
a period of 5420 +/- 28 seconds, revealing a spin-down trend in this
long-period accreting pulsar. Analysis of these data suggests that the neutron
star in this system is an accretion-powered magnetar.Comment: Submitted to The Astrophysical Journa
Disks Surviving the Radiation Pressure of Radio Pulsars
The radiation pressure of a radio pulsar does not necessarily disrupt a
surrounding disk. The position of the inner radius of a thin disk around a
neutron star can be estimated by comparing the electromagnetic energy density
generated by the neutron star with the kinetic energy density of the disk.
Inside the light cylinder, the near zone electromagnetic field is essentially
the dipole magnetic field, and the inner radius is the conventional Alfven
radius. Far outside the light cylinder, in the radiation zone, and the
electromagnetic energy density is where is the
Poynting vector. Shvartsman (1970) argued that a stable equilibrium can not be
found in the radiative zone because the electromagnetic energy density
dominates over the kinetic energy density, with the relative strength of the
electromagnetic stresses increasing with radius. In order to check whether this
is true also near the light cylinder, we employ global electromagnetic field
solutions for rotating oblique magnetic dipoles (Deutsch 1955). Near the light
cylinder the electromagnetic energy density increases steeply enough with
decreasing to balance the kinetic energy density at a stable equilibrium.
The transition from the near zone to the radiation zone is broad. The radiation
pressure of the pulsar can not disrupt the disk for values of the inner radius
up to about twice the light cylinder radius if the rotation axis and the
magnetic axis are orthogonal. This allowed range beyond the light cylinder
extends much further for small inclination angles. We discuss implications of
this result for accretion driven millisecond pulsars and young neutron stars
with fallback disks.Comment: Accepted by Astrophysical Journal, final version with a minor
correctio
Analysis of the effect of potential cycles on the reflective infrared signals of nitro groups in nanofilms: Application of the fractional moments statistics
The effect of the potential cycles on the reflective IR signals of nitro-groups in nanofilms was studied for the statistical characterization of nitrobenzene (NB) and nitroazobenzene (NAB)-modified glassy carbon (GC) surfaces. Both NB and NAB nanofilms were obtained by the electrochemical reduction of the diazonium tetrafluoroborate salts in acetonitrile using cyclic voltammetry (CV). The modified surfaces were denoted as GC-(NB)n and GC-(NAB)n, respectively, where n indicates the number of CV cycles performed during modification. Reflective IR signals of the normalized NB and NAB nanofilms and GC were used for the quantitative evaluation of the effect of the potential cycles on the reflective IR signals of nitro-groups in nanofilms. The detection and quantitative reading of the influence of number of CV cycles were realized in the frame of a new error controllable approach that was applied for analysis of all available set of data. This approach includes in itself the following basic steps: (a) the procedure of the division (normalization) on the GC spectra, (b) the comparison of the smoothed spectra for their statistical proximity in the frame of the statistics of the fractional moments, (c) extraction of possible calibration parameters for possible calibration of the normalized spectra with respect to the number of CV cycles. These three basic steps are becoming effective for detection of the influence of some external factors. In our case it is important to detect the influence of the factor n characterizing CV cycles
Application of the linear principle for the strongly-correlated variables: Calculations of differences between spectra
In this paper the authors suggest a new method of detection of possible differences between similar near infrared (NIR) spectra based on the self-similar (fractal) property. This property is a general characteristic that belongs to a wide class of the strongly-correlated systems. As an example we take a set of NIR spectra measured for three systems: (1) glassy carbon (GC) electrodes, (2) GC electrodes affected by azobenzene (AB) substance and finally (3) films (AB-FILM). Besides the physical model that should describe the intrinsic properties of these substances we found the fitting function that follow from the linear principle for the strongly-correlated variables. This function expressed in the form of linear combination of 4 power-law functions describes with the high accuracy the integrated curves that were obtained from the averaged values of the initially measured spectra. The nine fitting parameters can be considered as the quantitative "finger prints" for detection of the differences between similar spectra. Besides this result we established the self-similar behavior of the remnant functions. In other words, the difference between the initially integrated function and its fitting function can be expressed in the form of linear combinations of periodical functions having a set of frequencies following to relationship ω(k)=ω0ξk, where the initial frequency ω0 and scaling factor ξ are determined by the eigen-coordinates method. This behavior in the NIR spectra was discovered in the first time and physical reasons of such behavior merit an additional research. © 2011
Where Are All The Fallback Disks? Constraints on Propeller Systems
Fallback disks are expected to form around new-born neutron stars following a
supernova explosion. In almost all cases, the disk will pass through a
propeller stage. If the neutron star is spinning rapidly (initial period ms) and has an ordinary magnetic moment ( G cm), the
rotational power transferred to the disk by the magnetic field of the neutron
star will exceed the Eddington limit by many orders of magnitude, and the disk
will be rapidly disrupted. Fallback disks can thus survive only around
slow-born neutron stars and around black holes, assuming the latter do not
torque their surrounding disks as strongly as do neutron stars. This might
explain the apparent rarity of fallback disks around young compact objects.Comment: Submitted to Astrophysical Journal Letter
- …