1,351 research outputs found

    Antiferromagnetic order in (Ga,Mn)N nanocrystals: A density functional theory study

    Get PDF
    We investigate the electronic and magnetic properties of (Ga,Mn)N nanocrystals using the density functional theory. We study both wurtzite and zinc-blende structures doped with one or two substitutional Mn impurities. For a single Mn dopant placed close to surface, the behavior of the empty Mn-induced state, hereafter referred to as "Mn hole", is different from bulk (Ga,Mn)N. The energy level corresponding to this off-center Mn hole lies within the nanocrystal gap near the conduction edge. For two Mn dopants, the most stable magnetic configuration is antiferromagnetic, and this was unexpected since (Ga,Mn)N bulk shows ferromagnetism in the ground state. The surprising antiferromagnetic alignment of two Mn spins is ascribed also to the holes linked to the Mn impurities located close to surface. Unlike Mn holes in (Ga,Mn)N bulk, these Mn holes in confined (Ga,Mn)N nanostructures do not contribute to the ferromagnetic alignment of the two Mn spins

    Optical spin control in nanocrystalline magnetic nanoswitches

    Get PDF
    We investigate the optical properties of (Cd,Mn)Te quantum dots (QDs) by looking at the excitons as a function of the Mn impurities positions and their magnetic alignments. When doped with two Mn impurities, the Mn spins, aligned initially antiparallel in the ground state, have lower energy in the parallel configuration for the optically active spin-up exciton. Hence, the photoexcitation of the QD ground state with antiparallel Mn spins induces one of them to flip and they align parallel. This suggests that (Cd,Mn)Te QDs are suitable for spin-based operations handled by light

    First-principles calculations of the magnetic properties of (Cd,Mn)Te nanocrystals

    Full text link
    We investigate the electronic and magnetic properties of Mn-doped CdTe nanocrystals (NCs) with 2 nm in diameter which can be experimentally synthesized with Mn atoms inside. Using the density-functional theory, we consider two doping cases: NCs containing one or two Mn impurities. Although the Mn d peaks carry five up electrons in the dot, the local magnetic moment on the Mn site is 4.65 mu_B. It is smaller than 5 mu_B because of the sp-d hybridization between the localized 3d electrons of the Mn atoms and the s- and p-type valence states of the host compound. The sp-d hybridization induces small magnetic moments on the Mnnearest- neighbor Te sites, antiparallel to the Mn moment affecting the p-type valence states of the undoped dot, as usual for a kinetic-mediated exchange magnetic coupling. Furthermore, we calculate the parameters standing for the sp-d exchange interactions. Conduction N0\alpha and valence N0\beta are close to the experimental bulk values when the Mn impurities occupy bulklike NCs' central positions, and they tend to zero close to the surface. This behavior is further explained by an analysis of valence-band-edge states showing that symmetry breaking splits the states and in consequence reduces the exchange. For two Mn atoms in several positions, the valence edge states show a further departure from an interpretation based in a perturbative treatment. We also calculate the d-d exchange interactions |Jdd| between Mn spins. The largest |Jdd| value is also for Mn atoms on bulklike central sites; in comparison with the experimental d-d exchange constant in bulk Cd0.95Mn0.05Te, it is four times smaller

    A geometrical analysis of the field equations in field theory

    Full text link
    In this review paper we give a geometrical formulation of the field equations in the Lagrangian and Hamiltonian formalisms of classical field theories (of first order) in terms of multivector fields. This formulation enables us to discuss the existence and non-uniqueness of solutions, as well as their integrability.Comment: 14 pages. LaTeX file. This is a review paper based on previous works by the same author

    Multivector Field Formulation of Hamiltonian Field Theories: Equations and Symmetries

    Full text link
    We state the intrinsic form of the Hamiltonian equations of first-order Classical Field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analyzed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between {\sl Cartan-Noether symmetries} and {\sl general symmetries} of the system is discussed. Noether's theorem is also stated in this context, both the ``classical'' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed.Comment: Some minor mistakes are corrected. Bibliography is updated. To be published in J. Phys. A: Mathematical and Genera

    On the Multimomentum Bundles and the Legendre Maps in Field Theories

    Full text link
    We study the geometrical background of the Hamiltonian formalism of first-order Classical Field Theories. In particular, different proposals of multimomentum bundles existing in the usual literature (including their canonical structures) are analyzed and compared. The corresponding Legendre maps are introduced. As a consequence, the definition of regular and almost-regular Lagrangian systems is reviewed and extended from different but equivalent ways.Comment: LaTeX file, 19 pages. Replaced with the published version. Minor mistakes are correcte
    corecore