3,462,234 research outputs found

    Dynamical quark loop light-by-light contribution to muon g-2 within the nonlocal chiral quark model

    Get PDF
    The hadronic corrections to the muon anomalous magnetic moment a_mu, due to the gauge-invariant set of diagrams with dynamical quark loop light-by-light scattering insertions, are calculated in the framework of the nonlocal chiral quark model. These results complete calculations of all hadronic light-by-light scattering contributions to a_mu in the leading order in the 1/Nc expansion. The result for the quark loop contribution is a_mu^{HLbL,Loop}=(11.0+-0.9)*10^(-10), and the total result is a_mu^{HLbL,NxQM}=(16.8+-1.2)*10^(-10).Comment: 11 pages, 5 figures, 1 tabl

    Is nonrelativistic gravity possible?

    Full text link
    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.Comment: 4 pages, v2, typos corrected, published in Physical Review

    Explicit Representations for the T-Matrix on Unphysical Energy Sheets and Resonances in Two- and Three-Body Systems

    Full text link
    We discuss the structure of the two- and three-body T-matrices, scattering matrices, and resolvents continued to the unphysical energy sheets. Our conclusions arise due to the representations that have been found for analytically continued momentum-space kernels of the T-operators. These representations are explicitly written only in terms of the physical-sheet kernels of the T-matrix itself. One of advantages of the representations in the three-body case is that they show which portions of the physical-sheet three-body scattering matrix are ``responsible'' for the resonances associated with a particular unphysical sheet. A resonance appears to be the energy where the correspondingly truncated scattering matrix (taken on the physical sheet) has eigenvalue zero. We also mention applications of this approach to some specific three-body systems, based on the Faddeev differential equations.Comment: Based on a lecture given at the International Workshop ``Critical Stability of Few-Body Quantum Systems'' (Dresden, October 17--22, 2005

    Modeling Subtropical Water-level Dynamics Distribution

    Get PDF
    ERTS-1 MSS imagery coupled with data collection platforms relaying virtual real time data for modeling subtropical water level dynamics distribution in south Florid
    corecore