4,815 research outputs found

    Interaction Effects on Number Fluctuations in a Bose-Einstein Condensate of Light

    Full text link
    We investigate the effect of interactions on condensate-number fluctuations in Bose-Einstein condensates. For a contact interaction we variationally obtain the equilibrium probability distribution for the number of particles in the condensate. To facilitate comparison with experiment, we also calculate the zero-time delay autocorrelation function g(2)(0)g^{(2)}(0) for different strengths of the interaction. Finally, we focus on the case of a condensate of photons and discuss possible mechanisms for the interaction.Comment: 13 pages, version 3, 4 figure

    Phase diffusion in a Bose-Einstein condensate of light

    Full text link
    We study phase diffusion in a Bose-Einstein condensate of light in a dye-filled optical microcavity, i.e., the spreading of the probability distribution for the condensate phase. To observe this phenomenon, we propose an interference experiment between the condensed photons and an external laser. We determine the average interference patterns, considering quantum and thermal fluctuations as well as dissipative effects due to the dye. Moreover, we show that a representative outcome of individual measurements can be obtained from a stochastic equation for the global phase of the condensate

    Configurational analysis of uranium-doped thorium dioxide

    Get PDF
    While thorium dioxide is already used industrially in high temperature applications, more insight is needed about the behaviour of the material as part of a mixed-oxide (MOX) nuclear fuel, incorporating uranium. We have developed a new interatomic potential model, commensurate with a prominent existing UO2 potential, to conduct configurational analyses of uranium-doped ThO2 supercells. Using the GULP and Site Occupancy Disorder (SOD) computational codes, we have analysed the distribution of low concentrations of uranium in the bulk material, but have not observed the formation of uranium clusters or a single dominant configuration

    Theory for Bose-Einstein condensation of light in nano-fabricated semiconductor microcavities

    Get PDF
    We construct a theory for Bose-Einstein condensation of light in nano-fabricated semiconductor microcavities. We model the semiconductor by one conduction and one valence band which consist of electrons and holes that interact via a Coulomb interaction. Moreover, we incorporate screening effects by using a contact interaction with the scattering length for a Yukawa potential and describe in this manner the crossover from exciton gas to electron-hole plasma as we increase the excitation level of the semiconductor. We then show that the dynamics of the light in the microcavities is damped due to the coupling to the semiconductor. Furthermore, we demonstrate that on the electron-hole plasma side of the crossover, which is relevant for the Bose-Einstein condensation of light, this damping can be described by a single dimensionless damping parameter that depends on the external pumping. Hereafter, we propose to probe the superfluidity of light in these nano-fabricated semiconductor microcavities by making use of the differences in the response in the normal or superfluid phase to a sudden rotation of the trap. In particular, we determine frequencies and damping of the scissors modes that are excited in this manner. Moreover, we show that a distinct signature of the dynamical Casimir effect can be observed in the density-density correlations of the excited light fluid

    Measurement of the community empowerment

    Full text link

    Risk factors for ischemic stroke and transient ischemic attack in patients under age 50

    Get PDF
    To analyze risk factors for ischemic stroke and transient ischemic attack (TIA) in young adults under the age of 50. To make recommendations for additional research and practical consequences. From 97 patients with ischemic stroke or TIA under the age of 50, classical cardiovascular risk factors, coagulation disorders, history of migraine, use of oral contraceptives, cardiac abnormalities on ECG and echocardiography, and the results of duplex ultrasound were retrospectively analyzed. Literature was reviewed and compared to the results. 56.4% of the patients had hypertension, 12.1% increased total cholesterol, 20% hypertriglyceridemia, 31.5% an increased LDL-level, 32.6% a decreased HDL-level and 7.2% a disturbed glucose tolerance. Thrombophilia investigation was abnormal in 21 patients and auto-immune serology was abnormal in 15 patients. Ten of these patients were already known with a systemic disease associated with an increased risk for ischemic stroke (i.e. systemic lupus erythematosus). The ECG was abnormal in 16.7% of the cases, the echocardiography in 12.1% and duplex ultrasound of the carotid arteries was in 31.8% of the cases abnormal. Conventional cardiovascular risk factors are not only important in patients over the age of 50 with ischemic stroke or TIA, but also in this younger population under the age of 50. Thrombophilia investigation and/ or autoimmune serology should be restricted to patients without conventional cardiovascular risk factors and a history or other clinical symptoms associated with hypercoagulability and/ or autoimmune diseases

    Modelling the effects of salt solutions on the hydration of calcium ions

    Get PDF
    Classical molecular dynamics simulations of several aqueous alkali halide salt solutions have been used to determine the effect of electrolytes on the structure of water and the hydration properties of calcium ions. Compared with the simulations of Ca2+ ions in pure liquid water, the frequency of water exchange in the first hydration shell of calcium, which is a fundamental process in controlling the reactivity of calcium(II) aqua-ions, is drastically reduced in the presence of other electrolytes in solution. The strong stabilization of the hydration shell of Ca2+ occurs not only when the halide anions are directly coordinated to calcium, but also when the alkali and halide ions are placed at or outside the second coordination shell of Ca2+, suggesting that the reactivity of the first solvation shell of the calcium ion can be influenced by the specific affinity of other ions in solution for the water molecules coordinated to Ca2+. Analysis of the hydrogen-bonded structure of water in the vicinity of the calcium ion shows that the average number of hydrogen bonds per water molecules, which is 1.8 in pure liquid water, decreases as the concentration of alkali–halide salts in solution increases, and that the temporal fluctuations of hydrogen bonds are significantly larger than those obtained for Ca2+ in pure liquid water. This effect has been explained in terms of the dynamics of reorganization of the O–H X (X = F, Cl and Br) hydrogen bond. This work shows the importance of solution composition in determining the hydrogen-bonding network and ligand-exchange dynamics around metal ions, both in solution and at the mineral–water interfaces, which in turn has implications for interactions occurring at the mineral–water interface, ultimately controlling the mobilization of ions in the environment as well as in industrial processes

    Theory of Current-Driven Domain Wall Motion: A Poorman's Approach

    Full text link
    A self-contained theory of the domain wall dynamics in ferromagnets under finite electric current is presented. The current is shown to have two effects; one is momentum transfer, which is proportional to the charge current and wall resistivity (\rhow), and the other is spin transfer, proportional to spin current. For thick walls, as in metallic wires, the latter dominates and the threshold current for wall motion is determined by the hard-axis magnetic anisotropy, except for the case of very strong pinning. For thin walls, as in nanocontacts and magnetic semiconductors, the momentum-transfer effect dominates, and the threshold current is proportional to \Vz/\rhow, \Vz being the pinning potential

    Flood resilient landscapes: area-based solutions combine added value for society with flood risk management

    Get PDF
    Society faces challenges such as caring for sustainable agriculture, clean energy and restoring biodiversity, whilst developing housing and industries. Climate change meanwhile stresses the Dutch water management system, impacts flood risk management and fresh water supply. To ensure making the right decisions, which we will not regret in 100 years, we developed the concept of flood resilient landscapes. The concept of flood resilient landscapes confronts, with a perspective of long term development, desired socio-economic developments with carrying capacity and potential of underlying physical landscape conditions. The underlying principle is to create social added value while promoting or at least maintaining flood risk management, given (future) spatial and societal developments. The first results are so promising that the Dutch Flood Protection Programme aims to incorporate it. The flood resilient landscapes concept offers the prospect of keeping the Netherlands safe beyond 2100 at socially acceptable costs and with public support now and in the future and paves the way towards implementation throughout international deltas.</p
    • 

    corecore