1,594 research outputs found

    Polymerization of Methyl Methacrylate by Heat-Catalyst and Gamma-Irradiation Methods

    Get PDF
    Methyl methacrylate (MMA) was bulk-polymerized with 0 to 4% crosslinker (ethylene glycol dimethacrylate, EGDM, and trimethylol propane trimethacrylate, TMPTM), initiated with 0.05 to 5% catalyst (Vazo) at 65-75 C or 0.1 to 1 Mrad/hr gamma radiation at 20 C. Heat-catalyzed MMA conversion to polymer vs. time was obtained directly from polymer mass, which indicated that about 90% conversion had occurred at the exothermic peak temperature. The time to the exothermic peak temperature was used to determine sample polymerization time. The over-all polymerization rate varied with the half-power of initiator concentration. An Arrhenius plot of the initiator-time data gave an activation energy of 18 kcal/mole. A log-log relationship was found between crosslinker concentration and polymerization time over the 65-75 C temperature and 0.1-0.4% initiator range. The crosslinkers were found equally efficient in reducing polymerization time. Peak exothermie temperature varied directly with time, irrespective of the initiator and crosslinker concentrations or bath temperature except as they affected time. In the irradiation tests, the crosslinkers exhibited different data fits: log-log with EGDM and semilog for TMPTM. The time-dose rate equation for uncrosslinked MMA was analogous to that for heat-catalyzed polymerization. Molecular weight of uncrosslinked PMMA was determined as a function of temperature and catalyst concentration, and dose rate. Similar molecular weights were obtained for heat-catalyzed polymerization at 65 C and gamma irradiation at 20 C for numerically the same initiator concentration (%) and does rate (Mrad/hr)

    Expression of divIB of Bacillus subtilis during vegetative growth

    Get PDF
    Expression of the division initiation gene, divIB, of Bacillus subtilis vegetative growth was examined. lacZ fusion studies and transcription start point mapping have established that a sigma A promoter proximal to divIB is utilized in vivo. The -10 region of this promoter, which is located 93 bp upstream of the start codon, has been defined precisely by site-directed mutagenesis that destroys the promoter. Examination of transcripts by Northern (RNA) blotting has shown that there are at least two transcripts for divIB. The established proximal promoter was found to give rise to a very minor transcript which could not be convincingly demonstrated in wild-type cells but which became apparent upon insertion of a plasmid into the chromosome just upstream of this promoter. The major transcript for divIB originated from a site several kb upstream of the gene and is probably the same as the long polycistronic message also traversing the murD-spoVE-murG genes that was identified previously by others (A.D. Henriques, H. de Lencastre, and P.J. Piggot, Biochimie 74:735-748, 1992). Transcription from the proximal promoter alone, in an upstream-deletion mutant strain, provided sufficient DivIB for normal growth and division as well as sporulation

    Supernova pointing with low- and high-energy neutrino detectors

    Full text link
    A future galactic SN can be located several hours before the optical explosion through the MeV-neutrino burst, exploiting the directionality of ν\nu-ee-scattering in a water Cherenkov detector such as Super-Kamiokande. We study the statistical efficiency of different methods for extracting the SN direction and identify a simple approach that is nearly optimal, yet independent of the exact SN neutrino spectra. We use this method to quantify the increase in the pointing accuracy by the addition of gadolinium to water, which tags neutrons from the inverse beta decay background. We also study the dependence of the pointing accuracy on neutrino mixing scenarios and initial spectra. We find that in the ``worst case'' scenario the pointing accuracy is 88^\circ at 95% C.L. in the absence of tagging, which improves to 33^\circ with a tagging efficiency of 95%. At a megaton detector, this accuracy can be as good as 0.60.6^\circ. A TeV-neutrino burst is also expected to be emitted contemporaneously with the SN optical explosion, which may locate the SN to within a few tenths of a degree at a future km2^2 high-energy neutrino telescope. If the SN is not seen in the electromagnetic spectrum, locating it in the sky through neutrinos is crucial for identifying the Earth matter effects on SN neutrino oscillations.Comment: 13 pages, 7 figures, Revtex4 format. The final version to be published in Phys. Rev. D. A few points in the original text are clarifie

    Planar Silicon Metamaterial Lenslet Arrays for Millimeter-wavelength Imaging

    Full text link
    Large imaging arrays of detectors at millimeter and submillimeter wavelengths have applications that include measurements of the faint polarization signal in the Cosmic Microwave Background (CMB), and submillimeter astrophysics. We are developing planar lenslet arrays for millimeter-wavelength imaging using metamaterials microlithically fabricated using silicon wafers. This metamaterial technology has many potential advantages compared to conventional hemispherical lenslet arrays, including high precision and homogeneity, planar integrated anti-reflection layers, and a coefficient of thermal expansion matched to the silicon detector wafer. Here we describe the design process for a gradient-index (GRIN) metamaterial lenslet using metal-mesh patterned on silicon and a combination of metal-mesh and etched-hole metamaterial anti-reflection layers. We optimize the design using a bulk-material model to rapidly simulate and iterate on the lenslet design. We fabricated prototype GRIN metamaterial lenslet array and mounted it on a Polarbear/Simons Array 90/150~GHz band transition edge sensor (TES) bolometer detector array with sinuous planar antennas. Beam measurements of a prototype lenslet array agree reasonably well with the model simulations. We plan to further optimize the design and combine it with a broadband anti-reflection coating to achieve operation over 70--350~GHz bandwidth.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X, December 13-18, 202

    Mathematical modelling long-term effects of replacing Prevnar7 with Prevnar13 on invasive pneumococcal diseases in England and Wales

    Get PDF
    England and Wales recently replaced the 7-valent pneumococcal conjugate vaccine (PCV7) with its 13-valent equivalent (PCV13), partly based on projections from mathematical models of the long-term impact of such a switch compared to ceasing pneumococcal conjugate vaccination altogether. A compartmental deterministic model was used to estimate parameters governing transmission of infection and competition between different groups of pneumococcal serotypes prior to the introduction of PCV13. The best-fitting parameters were used in an individual based model to describe pneumococcal transmission dynamics and effects of various options for the vaccination programme change in England and Wales. A number of scenarios were conducted using (i) different assumptions about the number of invasive pneumococcal disease cases adjusted for the increasing trend in disease incidence prior to PCV7 introduction in England and Wales, and (ii) a range of values representing serotype replacement induced by vaccination of the additional six serotypes in PCV13. Most of the scenarios considered suggest that ceasing pneumococcal conjugate vaccine use would cause an increase in invasive pneumococcal disease incidence, while replacing PCV7 with PCV13 would cause an overall decrease. However, the size of this reduction largely depends on the level of competition induced by the additional serotypes in PCV13. The model estimates that over 20 years of PCV13 vaccination, around 5000–62000 IPD cases could be prevented compared to stopping pneumococcal conjugate vaccination altogether. Despite inevitable uncertainty around serotype replacement effects following introduction of PCV13, the model suggests a reduction in overall invasive pneumococcal disease incidence in all cases. Our results provide useful evidence on the benefits of PCV13 to countries replacing or considering replacing PCV7 with PCV13, as well as data that can be used to evaluate the cost-effectiveness of such a switch

    Performance and on-sky optical characterization of the SPTpol instrument

    Full text link
    In January 2012, the 10m South Pole Telescope (SPT) was equipped with a polarization-sensitive camera, SPTpol, in order to measure the polarization anisotropy of the cosmic microwave background (CMB). Measurements of the polarization of the CMB at small angular scales (~several arcminutes) can detect the gravitational lensing of the CMB by large scale structure and constrain the sum of the neutrino masses. At large angular scales (~few degrees) CMB measurements can constrain the energy scale of Inflation. SPTpol is a two-color mm-wave camera that consists of 180 polarimeters at 90 GHz and 588 polarimeters at 150 GHz, with each polarimeter consisting of a dual transition edge sensor (TES) bolometers. The full complement of 150 GHz detectors consists of 7 arrays of 84 ortho-mode transducers (OMTs) that are stripline coupled to two TES detectors per OMT, developed by the TRUCE collaboration and fabricated at NIST. Each 90 GHz pixel consists of two antenna-coupled absorbers coupled to two TES detectors, developed with Argonne National Labs. The 1536 total detectors are read out with digital frequency-domain multiplexing (DfMUX). The SPTpol deployment represents the first on-sky tests of both of these detector technologies, and is one of the first deployed instruments using DfMUX readout technology. We present the details of the design, commissioning, deployment, on-sky optical characterization and detector performance of the complete SPTpol focal plane.Comment: 15 pages, 6 figures. Conference: SPIE Astronomical Telescopes and Instrumentation 201

    On the Hadronic Beam Model for Gamma-ray Production in Blazars

    Full text link
    We consider, herein, a model for gamma-ray production in blazars in which a relativistic, highly-collimated electron-proton beam interacts with a dense, compact cloud as the jet propagates through the broad and perhaps narrow line regions (BLR and NLR) of active galactic nuclei (AGN). During the propagation of the beam through the cloud, the process of excitation of plasma waves becomes an important energy loss mechanism, especially for mildly relativistic proton beams. We compute the expected spectra of gamma-rays from the decay of neutral pions produced in hadronic collisions of the beam with the cloud, taking into account collisionless losses of the electron-proton beam. This model may explain the X-ray and TeV gamma-ray (both low and high emission states) of Mrk 421 as a result of synchrotron emission of secondary pairs from the decay of charged pions and gamma-ray emission from the decay of neutral pions for the plausible cloud parameters. However clouds can not be too hot and too dense. Otherwise the TeV gamma-rays can be attenuated by the bremsstrahlung radiation in the cloud and the secondary pairs are not able to efficiently produce synchrotron flares because of the dominant role of inverse Compton scattering. The non-variable γ\gamma-ray emission observed from Mrk 421 in the EGRET energy range cannot be described by the γ\gamma-rays from decay of neutral pions provided that the spectrum of protons in the beam is well described by a simple power law. These γ\gamma-rays might only be produced by secondary pairs scattering the soft non-variable X-rays which might originate in the inner part of the accretion disk.Comment: 14 pages,3 figures, latex, submitted to Ap

    Are the New Physics Contributions from the Left-Right Symmetric Model Important for the Indirect CP Violation in the Neutral B Mesons?

    Full text link
    Several works analyzing the new physics contributions from the Left-Right Symmetric Model to the CP violation phenomena in the neutral B mesons can be found in the literature. These works exhibit interesting and experimentally sensible deviations from the Standard Model predictions but at the expense of considering a low right scale \upsilon_R around 1 TeV. However, when we stick to the more conservative estimates for \upsilon_R which say that it must be at least 10^7 GeV, no experimentally sensible deviations from the Standard Model appear for indirect CP violation. This estimate for \upsilon_R arises when the generation of neutrino masses is considered. In spite of the fact that this scenario is much less interesting and says nothing new about both the CP violation phenomenon and the structure of the Left-Right Symmetric Model, this possibility must be taken into account for the sake of completeness and when considering the see-saw mechanism that provides masses to the neutrino sector.Comment: LaTex file. 19 pages, 4 figures. Change in the way the paper address the problem. As a result, change in title, abstract, and some sections. Conclusions unchanged. Version to appear in Foundations of Physics Letter
    corecore