34 research outputs found
Development of a cell formation heuristic by considering realistic data using principal component analysis and Taguchi’s method
Over the last four decades of research, numerous cell formation algorithms have been developed and tested, still this research remains of interest to this day. Appropriate manufacturing cells formation is the first step in designing a cellular manufacturing system. In cellular manufacturing, consideration to manufacturing flexibility and productionrelated data is vital for cell formation. The consideration to this realistic data makes cell formation problemvery complex and tedious. It leads to the invention and implementation of highly advanced and complex cell formation methods. In this paper an effort has been made to develop a simple and easy to understand/implement manufacturing cell formation heuristic procedure with considerations to the number of production and manufacturing flexibility-related parameters. The heuristic minimizes inter-cellular movement cost/time. Further, the proposed heuristic is modified for the application of principal component analysis and Taguchi's method. Numerical example is explained to illustrate the approach. A refinement in the results is observed with adoption of principal component analysis and Taguchi's method
Experimental (FT‒IR, FT‒Raman, and UV‒Vis) and quantum chemical calculations on monomer and dimer structures of l-hydroxy-2-naphthoic acid using the DFT and TD‒DFT methods
822-835The fourier transform infrared (FT‒IR) and fourier transform Raman (FT‒Raman) spectra of l-hydroxy-2-naphthoic acid (1H2NA) in solid phase have been experimentally recorded and analyzed in the region 4000‒400 cm−1. DFT/B3LYP/6‒31G (d,p) calculations were used to determine the optimized molecular structure, conformational, non-linear optical (NLO), natural bond orbital (NBO) analysis, molecular surfaces, Mulliken, NBO charges and vibrational studies of 1H2NA. Obtained results on the geometric structure, vibrational frequencies and UV‒Vis spectral analysis are compared with the observed data. The dimeric structure of 1H2NA with the DFT/B3LYP/6‒31G (d,p) level caused by the shifts of O–H and C=O bands in the vibrational spectra were also studied. Moreover, the spectroscopic and theoretical results were compared with the corresponding properties for monomeric and dimeric structures of 1H2NA. The detailed vibrational assignments were performed with the DFT calculation, and the potential energy distribution (PED) was obtained by the vibrational energy distribution analysis (VEDA4) program. TD‒DFT/B3LYP/6‒31G (d,p) calculations with the SCF (self‒consistent field) in gas phase and ethanol solvent in the excited state were employed to investigated UV‒Vis absorption spectra and the major contributions to the electronic transitions were obtained. The NLO properties such as mean polarizability (α>), the anisotropy of the polarizability (α>) and the mean first‒order hyperpolarizability (β>) were computed by using finite field method. The computed values of μ, α and β of the title molecule are 2.2744 D, 17.3225 × 10−24 esu and 4.222 × 10 −30 esu, respectively. The high β values and non-zero values of μ indicate that the title compound might be a good candidate for NLO material
Theoretical Investigation on the Molecular Structure, Electronic, Spectroscopic Studies and Nonlinear Optical Properties of 5-bromo-1-(2-cyano-pyridin-4-yl)-1H-indazole-3-carboxylic acid diethylamide: a DFT and TD-DFT Study
Quantum chemical calculations on the geometrical, conformational, spectroscopic (FTIR, FT-Raman) analysis and NLO activity of milrinone [5-cyano-2-methyl-(3,4'-bipyridin)-6(1h)-one] by using hartree-fock and density functional methods
478-489The Fourier transform infrared (FTIR) and Fourier transform Raman (FT-Raman) spectra of milrinone [5-Cyano-2-methyl-(3,4'-bipyridin)-6(1H)-one] in solid phase have been recorded and analyzed. Quantum chemical calculations of the optimized molecular structure, energies, molecular surfaces, conformational, nonlinear optical (NLO) properties and vibrational studies of milrinone have been calculated by using hartree-fock (HF) and density functional theory (DFT/B3LYP) with 6-31G(d,p) basis set. Obtained results on the geometric structure are compared with the experimental X-ray diffraction. The calculated highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies also confirm that charge transfer occurs within the molecule. Molecular parameters like global hardness (η), global softness (σ) and electronegativity (χ) have been calculated with the results obtained from the HOMO and LUMO molecular orbital energies. Nonlinear optical parameters [mean polarizability (), the anisotropy of the polarizability () and the mean first-order hyperpolarizability ()] of the title compound have been investigated theoretically. A detailed interpretation of the infrared and raman spectra of milrinone have been performed with HF and DFT calculations and the potential energy distribution (PED) obtained from the vibrational energy distribution analysis (VEDA4) program
Conformational, spectroscopic (FT-IR, FT-Raman, and UV-Vis), and molecular docking studies of N-(2-hydroxyethyl) succinimide
Quantum Chemical Calculations of the Spectroscopic Properties and Nonlinear Optical Activity of 2,6-Dibromo-3-Chloro-4-Fluoroaniline
Theoretical and spectroscopic studies of a tricyclic antidepressant, imipramine hydrochloride
Experimental and theoretical study of the substituent type and position effects on 3-(substituted phenyl)-cis-4,5-dihydroisoxazole- 4,5-diyl)bismethylene)diacetate derivatives
Effects of the substituent type and the position (X = -H, -p-CH3, -p-C2H5, -p-CF3, -p-Br, -p-Cl, -p-CN, -m-F, -m-NO2) on 3-(substituted phenyl)-cis-4,5-dihydroisoxazole-4,5-diyl)bis(methylene)diacetate derivatives are investigated experimentally FTIR and UV-Vis and theoretically using the density functional theory (DFT) at the B3LYP/6-311G(d,p) level of theory. The influence of these substituents on the frontier molecular orbital analysis of the investigated series is discussed using DFT. The absorption spectra (UV-Vis spectra) of all the derivatives in the gas phase and the chloroform solvent simulated using the time-dependent density functional theory (TD-DFT) are compared with those obtained experimentally.</jats:p
