48 research outputs found

    Meson Mixing and Dilepton Production in Heavy Ion Collisions

    Get PDF
    We study the possibility of ρa0\rho-a_0 mixing via N-N excitations in dense nuclear matter. This mixing is found to induce a peak in the dilepton spectra at an invariant mass equal to that of the a0a_0. We calculate the cross section for dilepton production through mixing and we compare its size with that of ππ\pi-\pi annihilation. In-medium masses and mixing angles are also calculated. Some preliminary results of the mixing effect on the dilepton production rates at finite temperature are also presented.Comment: To be published in the proceedings of CIPANP 200

    Squeezing lepton pairs out of broken symmetries

    Get PDF
    We discuss two possible signatures of symmetry breaking that can appear in dilepton spectra, as measured in relativistic heavy ion collisions. The first involves scalar-vector meson mixing and is related to the breaking of Lorentz symmetry by a hot medium. The second is related to the breaking of Furry's theorem by a charged quark-gluon plasma. Those signals will be accessible to upcoming measurements to be performed at the GSI, RHIC, and the LHC.Comment: 5 pages, 4 figures, talk given at the INPC 2001 (International Conference on Nuclear Physics), 30 July - 3 August 2001, Berkeley, C

    Isospin mode splitting and mixing in asymmetric nuclear matter

    Get PDF
    We estimate exclusive density and asymmetry parameter dependent dispersion relations of various charged states of pions in asymmetric nuclear matter. The possibility of matter induced mixing of π0\pi^0 with η\eta is clearly exposed with the further mass modification of π0\pi^0 meson due to mixing. Asymmetry driven mass splitting and mixing amplitude are of the same order as the corresponding values in vacuum. Closed form analytic results for the mass shifts and dispersion relations with and without mixing are presented. Furthermore, we discuss the sensitivity of our results on the scalar mean field within the framework of Quantum Hadrodynamics.Comment: 8 pages, 4 Figure

    Baryonic contributions to the dilepton spectra in relativistic heavy ion collisions

    Get PDF
    We investigate the baryonic contributions to the dilepton yield in high energy heavy ion collisions within the context of a transport model. The relative contribution of the baryonic and mesonic sources are examined. It is observed that most dominant among the baryonic channels is the decay of N*(1520) and mostly confined in the region below the rho peak. In a transport theory implementation we find the baryonic contribution to the lepton pair yield to be small.Comment: 11 pages, 8 figure

    Rho-omega mixing in asymmetric nuclear matter via QCD sum rule approach

    Full text link
    We evaluate the operator product expansion (OPE) for a mixed correlator of the isovector and isoscalar vector currents in the background of the nucleon density with intrinsic isospin asymmetry [i.e. excess of neutrons over protons] and match it with its imaginary part, given by resonances and continuum, via the dispersion relation. The leading density-dependent contribution to ρω\rho-\omega mixing is due the scattering term, which turns out to be larger than any density dependent piece in the OPE. We estimate that the asymmetric density of nnnp2.5×102 fm3n_n-n_p \sim 2.5 \times 10^{-2} ~{\rm fm^3} induces the amplitude of ρω\rho-\omega mixing, equal in magnitude to the mixing amplitude in vacuum, with the constructive interference for positive and destructive for negative values of nnnpn_n-n_p. We revisit sum rules for vector meson masses at finite nucleon density to point out the numerical importance of the screening term in the isoscalar channel, which turns out to be one order of magnitude larger than any density-dependent condensates over the Borel window. This changes the conclusions about the density dependence of mωm_\omega, indicating 40\sim 40 MeV increase at nuclear saturation density.Comment: 8 pages, Revte

    ρ\rho-ω\omega mixing and spin dependent CSV potential

    Full text link
    We construct the charge symmetry violating (CSV) nucleon-nucleon potential induced by the ρ0\rho^0-\o mixing due to the neutron-proton mass difference driven by the NNNN loop. Analytical expression for for the two-body CSV potential is presented containing both the central and non- central NNNN interaction. We show that the ρ\rhoNNNN tensor interaction can significantly enhance the charge symmetry violating NNNN interaction even if momentum dependent off-shell ρ0\rho^0-ω\omega mixing amplitude is considered. It is also shown that the inclusion of form factors removes the divergence arising out of the contact interaction. Consequently, we see that the precise size of the computed scattering length difference depends on how the short range aspects of the CSV potential are treated.Comment: Accepted for publication in Phys. Rev.

    Ground state energy of spin polarized quark matter with correlation

    Full text link
    We calculate the ground state energy of cold and dense spin polarized quark matter with corrections due to correlation energy (Ecorr)(E_{corr}). Expressions for EcorrE_{corr} both in the non-relativistic and ultra-relativistic regimes have been derived and compared with the exchange and kinetic term present in the perturbation series. It is observed that the inclusion of correlation energy does not rule out the possibility of the ferromagnetic phase transition at low density within the model proposed by Tatsumi\cite{tatsumi00}. We also derive the spin stiffness constant in the high density limit of such a spin polarized matter.Comment: 20 pages, 7 figures, new references added, accepted to be published in Phys.Rev
    corecore