11,226 research outputs found
Generation and evaluation of a large mutational library from the Escherichia coli mechanosensitive channel of large conductance, MscL - Implications for channel gating and evolutionary design
Random mutagenesis of the mechanosensitive channel of large conductance (MscL) from Escherichia coli coupled with a high-throughput functional screen has provided new insights into channel structure and function. Complementary interactions of conserved residues proposed in a computational model for gating have been evaluated, and important functional regions of the channel have been identified. Mutational analysis shows that the proposed S1 helix, despite having several highly conserved residues, can be heavily mutated without significantly altering channel function. The pattern of mutations that make MscL more difficult to gate suggests that MscL senses tension with residues located near the lipid headgroups of the bilayer. The range of phenotypical changes seen has implications for a proposed model for the evolutionary origin of mechanosensitive channels
Room-Temperature Alternative to the Arbuzov Reaction: The Reductive Deoxygenation of Acyl Phosphonates
The reductive deoxygenation of acyl phosphonates using a Wolff−Kishner-like sequence is described. This transformation allows direct access to alkyl phosphonates from acyl phosphonates at room temperature. The method can be combined with acyl phosphonate synthesis into a one pot, four-step procedure for the conversion of carboxylic acids into alkyl phosphonates. The methodology works well for a variety of aliphatic acids and shows a functional group tolerance similar to that of other hydrazone-forming reactions
Preparation of Translationally Competent tRNA by Direct Chemical Acylation
Nonsense codon suppression for unnatural amino acid incorporation requires the preparation of a suppressor aminoacyl-tRNA. Chemical acylation strategies are general but inefficient and arduous. A recent report (J. Am. Chem. Soc. 2007, 129, 15848) showed acylation of RNA mediated by lanthanum(III) using amino acid phosphate esters. The successful implementation of this methodology to full-length suppressor tRNA is described, and it is shown that the derived aminoacyl-tRNA is translationally competent in Xenopus oocytes
Establishing an Ion Pair Interaction in the Homomeric {rho}1 {gamma}-Aminobutyric Acid Type A Receptor That Contributes to the Gating Pathway
{gamma}-Aminobutyric acid type A (GABAA) receptors are members of the Cys-loop superfamily of ligand-gated ion channels. Upon agonist binding, the receptor undergoes a structural transition from the closed to the open state, but the mechanism of gating is not well understood. Here we utilized a combination of conventional mutagenesis and the high precision methodology of unnatural amino acid incorporation to study the gating interface of the human homopentameric {rho}1 GABAA receptor. We have identified an ion pair interaction between two conserved charged residues, Glu92 in loop 2 of the extracellular domain and Arg258 in the pre-M1 region. We hypothesize that the salt bridge exists in the closed state by kinetic measurements and free energy analysis. Several other charged residues at the gating interface are not critical to receptor function, supporting previous conclusions that it is the global charge pattern of the gating interface that controls receptor function in the Cys-loop superfamily
Environmental Enforcement and the Limits of Cooperative Federalism: Will Courts Allow Citizen Suits to Pick Up the Slack
A Stereochemical Test of a Proposed Structural Feature of the Nicotinic Acetylcholine Receptor
Understanding the gating mechanism of the nicotinic acetylcholine receptor (nAChR) and similar channels constitutes a significant challenge in chemical neurobiology. In the present work, we use a stereochemical probe to evaluate a proposed pin-into-hydrophobic socket mechanism for the αVal46 side chain of the nAChR. Utilizing nonsense suppression methodology we incorporated isoleucine (Ile), O-methyl threonine (Omt) and threonine (Thr) as well as their side chain epimers (the allo counterparts). Surprisingly, our results indicate that only the pro-S methyl group of the αVal46 side chain is sensitive to changes in hydrophobicity, consistent with the precise geometrical requirements of the pin-into-socket mechanism
Particle propagation channels in the solar wind
The intensities of low energy solar-interplanetary electrons and ions at 1 AU occasionally change in a square wave manner. The changes may be increases or decreases and they typically have durations of from one hour to a few hours. In some cases these channels are bounded by discontinuities in the interplanetary field and the plasma properties differ from the surrounding solar wind. In one case solar flare particles were confined to a channel of width 3 x 10 to the 6th km at Earth. At the Sun this dimension extrapolates to about 12,000 km, a size comparable to small flares
Electrostatic Contributions of Aromatic Residues in the Local Anesthetic Receptor of Voltage-Gated Sodium Channels
Antiarrhythmics, anticonvulsants, and local anesthetics target voltage-gated sodium channels, decreasing excitability of nerve and muscle cells. Channel inhibition by members of this family of cationic, hydrophobic drugs relies on the presence of highly conserved aromatic residues in the pore-lining S6 segment of the fourth homologous domain of the channel. We tested whether channel inhibition was facilitated by an electrostatic attraction between lidocaine and {pi} electrons of the aromatic rings of these residues, namely a cation-{pi} interaction. To this end, we used the in vivo nonsense suppression method to incorporate a series of unnatural phenylalanine derivatives designed to systematically reduce the negative electrostatic potential on the face of the aromatic ring. In contrast to standard point mutations at the same sites, these subtly altered amino acids preserve the wild-type voltage dependence of channel activation and inactivation. Although these phenylalanine derivatives have no effect on low-affinity tonic inhibition by lidocaine or its permanently charged derivative QX-314 at any of the substituted sites, high-affinity use-dependent inhibition displays substantial cation-{pi} energetics for 1 residue only: Phe1579 in rNaV1.4. Replacement of the aromatic ring of Phe1579 by cyclohexane, for example, strongly reduces use-dependent inhibition and speeds recovery of lidocaine-engaged channels. Channel block by the neutral local anesthetic benzocaine is unaffected by the distribution of {pi} electrons at Phe1579, indicating that our aromatic manipulations expose electrostatic contributions to channel inhibition. These results fine tune our understanding of local anesthetic inhibition of voltage-gated sodium channels and will help the design of safer and more salutary therapeutic agents
New Views of Multi-Ion Channels
Thus, most site-directed mutagenesis data render it untenable to consider that two or more roughly equivalent high affinity sites govern selectivity in multi-ion pores. The papers by Dang and McCleskey and Kiss et al. respond to this challenge by showing that a model with a single high affinity site, flanked by two binding sites of lower affinity close to the pore entrances, can generate much of the classical multi-ion behavior. The sites need not interact, and the two flanking sites could arise from one of several mechanisms: a featureless charged vestibule, a dehydration step, or a specific weak binding site.
The multi-ion pore remains a cornerstone of permeation theory, but the new theory features only a single high affinity site and no mutual repulsion. The high flux rate occurs because ions pause at the flanking sites and reequilibrate thermally, gaining enough energy to move over the next barrier
- …
