9,973 research outputs found

    America\u27s Anti-Violence Campaign: The Use of Mediation to Reduce the Incidence of Workplace Violence

    Get PDF
    The author recommends that companies incorporate a mediation program into their anti-violence plans

    Monoidal Hom-Hopf algebras

    Get PDF
    Hom-structures (Lie algebras, algebras, coalgebras, Hopf algebras) have been investigated in the literature recently. We study Hom-structures from the point of view of monoidal categories; in particular, we introduce a symmetric monoidal category such that Hom-algebras coincide with algebras in this monoidal category, and similar properties for coalgebras, Hopf algebras and Lie algebras.Comment: 25 pages; extended version: compared to the version that appeared in Comm. Algebra, the Section Preliminary Results and Remarks 5.1 and 6.1 have been adde

    Kinetic Regimes and Cross-Over Times in Many-Particle Reacting Systems

    Full text link
    We study kinetics of single species reactions ("A+A -> 0") for general local reactivity Q and dynamical exponent z (rms displacement x_t ~ t^{1/z}.) For small molecules z=2, whilst z=4,8 for certain polymer systems. For dimensions d above the critical value d_c=z, kinetics are always mean field (MF). Below d_c, the density n_t initially follows MF decay, n_0 - n_t ~ n_0^2 Q t. A 2-body diffusion-controlled regime follows for strongly reactive systems (Q>Qstar ~ n_0^{(z-d)/d}) with n_0 - n_t ~ n_0^2 x_t^d. For Q<Qstar, MF kinetics persist, with n_t ~ 1/Qt. In all cases n_t ~ 1/x_t^d at the longest times. Our analysis avoids decoupling approximations by instead postulating weak physically motivated bounds on correlation functions.Comment: 10 pages, 1 figure, uses bulk2.sty, minor changes, submitted to Europhysics Letter

    Single-cycle THz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3

    Full text link
    Using the tilted-pulse-intensity-front scheme, we generate single-cycle terahertz (THz) pulses by optical rectification of femtosecond laser pulses in LiNbO3. In the THz generation setup, the condition that the image of the grating coincides with the tilted-optical-pulse front is fulfilled to obtain optimal THz beam characteristics and pump-to-THz conversion efficiency. The designed focusing geometry enables tight focus of the collimated THz beam with a spot size close to the diffraction limit, and the maximum THz electric field of 1.2 MV/cm is obtained

    Topological jamming of spontaneously knotted polyelectrolyte chains driven through a nanopore

    Full text link
    The advent of solid state nanodevices allows for interrogating the physico-chemical properties of a polyelectrolyte chain by electrophoretically driving it through a nanopore. Salient dynamical aspects of the translocation process have been recently characterized by theoretical and computational studies of model polymer chains free from self-entanglement. However, sufficiently long equilibrated chains are necessarily knotted. The impact of such topological "defects" on the translocation process is largely unexplored, and is addressed in this study. By using Brownian dynamics simulations on a coarse-grained polyelectrolyte model we show that knots, despite being trapped at the pore entrance, do not "per se" cause the translocation process to jam. Rather, knots introduce an effective friction that increases with the applied force, and practically halts the translocation above a threshold force. The predicted dynamical crossover, which is experimentally verifiable, is of relevance in applicative contexts, such as DNA nanopore sequencing.Comment: 6 pages; 7 figure

    Dynamics of a Rigid Rod in a Glassy Medium

    Full text link
    We present simulations of the motion of a single rigid rod in a disordered static 2d-array of disk-like obstacles. The rotational, DRD_{\rm R}, and center-of-mass translational, DCMD_{\rm CM}, diffusion constants are calculated for a wide range of rod length LL and density of obstacles ρ\rho. It is found that DCMD_{\rm CM} follows the behavior predicted by kinetic theory for a hard disk with an effective radius R(L)R(L). A dynamic crossover is observed in DRD_{\rm R} for LL comparable to the typical distance between neighboring obstacles dnnd_{\rm nn}. Using arguments from kinetic theory and reptation, we rationalize the scaling laws, dynamic exponents, and prefactors observed for DRD_{\rm R}. In analogy with the enhanced translational diffusion observed in deeply supercooled liquids, the Stokes-Einstein-Debye relation is violated for L>0.6dnnL > 0.6d_{\rm nn}.Comment: 8 pages, 4 figures. Major changes. To be published in Europhysics Letter

    Effective Edwards-Wilkinson equation for single-file diffusion

    Full text link
    In this work, we present an effective discrete Edwards-Wilkinson equation aimed to describe the single-file diffusion process. The key physical properties of the system are captured defining an effective elasticity, which is proportional to the single particle diffusion coefficient and to the inverse squared mean separation between particles. The effective equation gives a description of single-file diffusion using the global roughness of the system of particles, which presents three characteristic regimes, namely normal diffusion, subdiffusion and saturation, separated by two crossover times. We show how these regimes scale with the parameters of the original system. Additional repulsive interaction terms are also considered and we analyze how the crossover times depend on the intensity of the additional terms. Finally, we show that the roughness distribution can be well characterized by the Edwards-Wilkinson universal form for the different single-file diffusion processes studied here.Comment: 9 pages, 9 figure
    corecore