12,884 research outputs found

    A model for the Delta(1600) resonance and gamma N -> Delta(1600) transition

    Full text link
    A covariant spectator constituent quark model is applied to study the gamma N -> Delta(1600) transition. Two processes are important in the transition: a photon couples to the individual quarks of the Delta(1600) core (quark core), and a photon couples to the intermediate pion-baryon states (pion cloud). While the quark core contributions are estimated assuming Delta(1600) as the first radial excitation of Delta(1232), the pion cloud contributions are estimated based on an analogy with the gamma N -> Delta(1232) transition. To estimate the pion cloud contributions in the gamma N -> Delta(1600) transition, we include the relevant intermediate states, pi-N, pi-Delta, pi-N(1440) and pi-Delta(1600). Dependence on the four-momentum transfer squared, Q2, is predicted for the magnetic dipole transition form factor, GM*(Q2), as well as the helicity amplitudes, A_1/2(Q2) and A_3/2(Q2). The results at Q2=0 are compared with the existing data.Comment: To appear in Phys. Rev. D. Version with small modifications. 14 pages, 6 figures and 3 table

    Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: implications for diseases associated with iron accumulation

    Get PDF
    Mitochondrial dysfunction and reactive oxygen species (ROS) are often implicated in diseases involving oxidative stress and elevated iron. As mitochondria produce ATP by oxidative phosphorylation, ROS by-products are generated from the electron transport chain. Although superoxide and hydrogen peroxide have been thoroughly investigated, little evidence documents hydroxyl radical (HOā€¢) production in mitochondria. In order to determine whether HOā€¢ is generated under oxidative stress conditions by a Fenton-type mechanism, bovine heart submitochondrial particles were examined for HOā€¢ in the presence and absence of iron ligands, antioxidant enzymes and HOā€¢ scavengers. HOā€¢ was measured as 2,3- and 2,5-dihydroxybenzoic acid (DHBA), using HPLC with electrochemical detection. The iron ligand desferrioxamine significantly decreased DHBAs, indicating that HOā€¢ generation required iron redox-cycling. In addition, results from exogenous SOD and catalase, exogenous hydrogen peroxide, and HOā€¢-scavenger studies support a Fenton-type reaction mechanism. The results indicate that increased HOā€¢ levels occur in mitochondria under oxidative stress and that the HOā€¢ levels can be modulated with antioxidant enzymes and iron ligands. Our findings together with reports on iron accumulation in degenerative diseases highlight the importance of developing mitochondrial-targeted antioxidants for the therapeutic intervention of diseases associated with mitochondrial dysfunction and oxidative stress

    Simplified Solar Modulation Model of Inner Trapped Belt Proton Flux As a Function of Atmospheric Density

    Get PDF
    No simple algorithm seems to exist for calculating proton fluxes and lifetimes in the Earth's inner, trapped radiation belt throughout the solar cycle. Most models of the inner trapped belt in use depend upon AP8 which only describes the radiation environment at solar maximum and solar minimum in Cycle 20. One exception is NOAAPRO which incorporates flight data from the TIROS/NOAA polar orbiting spacecraft. The present study discloses yet another, simple formulation for approximating proton fluxes at any time in a given solar cycle, in particular between solar maximum and solar minimum. It is derived from AP8 using a regression algorithm technique from nuclear physics. From flux and its time integral fluence, one can then approximate dose rate and its time integral dose. It has already been published in this journal that the absorbed dose rate, D, in the trapped belts exhibits a power law relationship, D = A(rho)(sup -n), where A is a constant, rho is the atmospheric density, and the index n is weakly dependent upon shielding. However, that method does not work for flux and fluence. Instead, we extend this idea by showing that the power law approximation for flux J is actually bivariant in energy E as well as density rho. The resulting relation is J(E,rho)approx.(sum of)A(E(sup n))rho(sup -n), with A itself a power law in E. This provides another method for calculating approximate proton flux and lifetime at any time in the solar cycle. These in turn can be used to predict the associated dose and dose rate

    Thermoformed Containers Based on Starch and Starch/Coffee Waste Biochar Composites

    Get PDF
    Biodegradable containers support zero-waste initiatives when alternative end-of-life scenarios are available (e.g., composting, bio digestion). Thermoplastic starch (TPS) has emerged as a readily biodegradable and inexpensive biomaterial that can replace traditional plastics in applications such as food service ware and packaging. This study has two aims. First, demonstrate the thermoformability of starch/polycaprolactone (PCL) as a thermoplastic material with varying starch loadings. Second, incorporate biochar as a sustainable filler that can potentially lower the cost and enhance compostability. Biochar is a stable form of carbon produced by thermochemical conversion of organic biomass, such as food waste, and its incorporation into consumer products could promote a circular economy. Thermoformed samples were successfully made with starch contents from 40 to 60 wt.% without biochar. Increasing the amount of starch increased the viscosity of the material, which in turn affected the compression molding (sheet manufacturing) and thermoforming conditions. PCL content reduced the extent of biodegradation in soil burial experiments and increased the strength and elongation at break of the material. A blend of 50:50 starch:PCL was selected for incorporating biochar. Thermoformed containers were manufactured with 10, 20, and 30 wt.% biochar derived from waste coffee grounds. The addition of biochar decreased the elongation at break but did not significantly affect the modulus of elasticity or tensile strength. The results demonstrate the feasibility of using starch and biochar for the manufacturing of thermoformed containers

    Duration of Posttraumatic Amnesia Predicts Neuropsychological and Global Outcome in Complicated Mild Traumatic Brain Injury.

    Get PDF
    OBJECTIVES: Examine the effects of posttraumatic amnesia (PTA) duration on neuropsychological and global recovery from 1 to 6 months after complicated mild traumatic brain injury (cmTBI). PARTICIPANTS: A total of 330 persons with cmTBI defined as Glasgow Coma Scale score of 13 to 15 in emergency department, with well-defined abnormalities on neuroimaging. METHODS: Enrollment within 24 hours of injury with follow-up at 1, 3, and 6 months. MEASURES: Glasgow Outcome Scale-Extended, California Verbal Learning Test II, and Controlled Oral Word Association Test. Duration of PTA was retrospectively measured with structured interview at 30 days postinjury. RESULTS: Despite all having a Glasgow Coma Scale Score of 13 to 15, a quarter of the sample had a PTA duration of greater than 7 days; half had PTA duration of 1 of 7 days. Both cognitive performance and Extended Glasgow Outcome Scale outcomes were strongly associated with time since injury and PTA duration, with those with PTA duration of greater than 1 week showing residual moderate disability at 6-month assessment. CONCLUSIONS: Findings reinforce importance of careful measurement of duration of PTA to refine outcome prediction and allocation of resources to those with cmTBI. Future research would benefit from standardization in computed tomographic criteria and use of severity indices beyond Glasgow Coma Scale to characterize cmTBI

    Low State, Phase-Resolved IR Spectroscopy of VV Puppis

    Full text link
    We present phase-resolved low resolution JHKJHK and higher resolution KK-band spectroscopy of the polar VV Pup. All observations were obtained when VV Pup was in a low accretion state having a K magnitude near 15. The low resolution observations reveal cyclotron emission in the JJ band during some phases, consistent with an origin near the active 30.5 MG pole on the white dwarf. The secondary in VV Pup appears to be a normal M7V star and we find that the HH and KK band fluxes are entirely due to this star at all orbital phases during the low accretion state. We use our higher resolution Keck spectroscopy to produce the first KK-band radial velocity curve for VV Pup. Our orbital solution yields K2K_2=414Ā±27\pm27 km secāˆ’1^{-1} and leads to mass estimates of M1_1=0.73Ā±\pm0.05 MāŠ™_{\odot} and M2_2=0.10Ā±\pm0.02 MāŠ™_{\odot}. We find that the mass accretion rates during the normal low states of the polars VV Pup, EF Eri, and EQ Cet are near 10āˆ’13^{-13} MāŠ™_{\odot} yrāˆ’1^{-1}. The fact that \.M is not zero in low state polars indicates active secondary stars in these binary systems, including the sub-stellar donor star present in EF Eri.Comment: Accepted in Astronomical Journal 5 figure

    Loop 1 modulates the fidelity of DNA polymerase Ī»

    Get PDF
    Differences in the substrate specificity of mammalian family X DNA polymerases are proposed to partly depend on a loop (loop 1) upstream of the polymerase active site. To examine if this is the case in DNA polymerase Ī» (pol Ī»), here we characterize a variant of the human polymerase in which nine residues of loop 1 are replaced with four residues from the equivalent position in pol Ī². Crystal structures of the mutant enzyme bound to gapped DNA with and without a correct dNTP reveal that the change in loop 1 does not affect the overall structure of the protein. Consistent with these structural data, the mutant enzyme has relatively normal catalytic efficiency for correct incorporation, and it efficiently participates in non-homologous end joining of double-strand DNA breaks. However, DNA junctions recovered from end-joining reactions are more diverse than normal, and the mutant enzyme is substantially less accurate than wild-type pol Ī» in three different biochemical assays. Comparisons of the binary and ternary complex crystal structures of mutant and wild-type pol Ī» suggest that loop 1 modulates pol Ī»ā€™s fidelity by controlling dNTP-induced movements of the template strand and the primer-terminal 3ā€²-OH as the enzyme transitions from an inactive to an active conformation
    • ā€¦
    corecore