1,085 research outputs found

    Microscopic Dynamics of the Orientation of a Hydrated Nanoparticle in an Electric Field

    Get PDF
    We use atomistic simulations to study the orientational dynamics of a nonpolar nanoparticle suspended in water and subject to an electric field. Due to molecular-level effects we describe, the torque exerted on the nanoparticle exceeds continuum-electrostatics based estimates by about a factor of two. The reorientation time of a 16.2×16.2×3.35 ̊A3 nanoparticle in a field E \u3e 0.015V/ ̊A is an order of magnitude less than the field-free orientational time (∼ 1 ns). Surprisingly, the alignment speed is nearly independent of the nanoparticle size in this regime. These findings are relevant for design of novel nanostructures and sensors and development of nanoengineering methods

    Electrowetting at the nanoscale

    Get PDF
    Using molecular simulations of nano-sized aqueous droplets on a model graphite surface we demonstrate remarkable sensitivity of water contact angles to the applied electric field polarity and direction relative to the liquid/solid interface. The effect is explained by analyzing the influence of the field on interfacial hydrogen bonding in the nanodrop, which in turn affects the interfacial tensions. The observed anisotropy in droplet wetting is a new nanoscale phenomenon that has so far been elusive as, in current experimental setups, surface molecules represent a very low fraction of the total number affected by the field. Our findings may have important implications for the design of electrowetting techniques in fabrication and property tuning of nanomaterials

    Outbreak of acute hepatitis C following the use of anti-hepatitis C virus--screened intravenous immunoglobulin therapy

    Get PDF
    BACKGROUND and AIMS: Hepatitis C virus (HCV) infection has been associated with intravenous (IV) immunoglobulin (Ig), and plasma donations used to prepare IV Ig are now screened to prevent transmission. Thirty-six patients from the United Kingdom received infusions from a batch of anti-HCV antibody-screened intravenous Ig (Gammagard; Baxter Healthcare Ltd., Thetford, Norfolk, England) that was associated with reports of acute hepatitis C outbreak in Europe. The aim of this study was to document the epidemiology of this outbreak. METHODS: Forty-six patients from the United Kingdom treated with Gammagard (34 exposed and 12 unexposed to the batch) returned epidemiological questionnaires. RESULTS: Eighty-two percent of the exposed patients (28 of 34) became positive for HCV RNA. Eighteen percent of the patients (6 of 34) who had infusions with this batch tested negative for HCV RNA, but 2 of the patients had abnormal liver function and subsequently seroconverted to anti-HCV antibody positive. Twenty-seven percent of the patients (9 of 34) developed jaundice, and 79% (27 of 34) had abnormal liver transferase levels. Virus isolates (n=21), including an isolate from the implicated batch, were genotype 1a and virtually identical by sequence analysis of the NS5 region, consistent with transmission from a single source. CONCLUSIONS: Hepatitis C infection can be transmitted by anti-HCV-screened IV Ig. Careful documentation of IV Ig batch numbers and regular biochemical monitoring is recommended for all IV Ig recipients

    pre-miRNA profiles obtained through application of locked nucleic acids and deep sequencing reveals complex 5′/3′ arm variation including concomitant cleavage and polyuridylation patterns

    Get PDF
    Recent research hints at an underappreciated complexity in pre-miRNA processing and regulation. Global profiling of pre-miRNA and its potential to increase understanding of the pre-miRNA landscape is impeded by overlap with highly expressed classes of other non coding (nc) RNA. Here, we present a data set excluding these RNA before sequencing through locked nucleic acids (LNA), greatly increasing pre-miRNA sequence counts with no discernable effect on pre-miRNA or mature miRNA sequencing. Analysis of profiles generated in total, nuclear and cytoplasmic cell fractions reveals that pre-miRNAs are subject to a wide range of regulatory processes involving loci-specific 3′- and 5′-end variation entailing complex cleavage patterns with co-occurring polyuridylation. Additionally, examination of nuclear-enriched flanking sequences of pre-miRNA, particularly those derived from polycistronic miRNA transcripts, provides insight into miRNA and miRNA-offset (moRNA) production, specifically identifying novel classes of RNA potentially functioning as moRNA precursors. Our findings point to particularly intricate regulation of the let-7 family in many ways reminiscent of DICER1-independent, pre-mir-451-like processing, introduce novel and unify known forms of pre-miRNA regulation and processing, and shed new light on overlooked products of miRNA processing pathways

    Are megaquakes clustered?

    Full text link
    We study statistical properties of the number of large earthquakes over the past century. We analyze the cumulative distribution of the number of earthquakes with magnitude larger than threshold M in time interval T, and quantify the statistical significance of these results by simulating a large number of synthetic random catalogs. We find that in general, the earthquake record cannot be distinguished from a process that is random in time. This conclusion holds whether aftershocks are removed or not, except at magnitudes below M = 7.3. At long time intervals (T = 2-5 years), we find that statistically significant clustering is present in the catalog for lower magnitude thresholds (M = 7-7.2). However, this clustering is due to a large number of earthquakes on record in the early part of the 20th century, when magnitudes are less certain.Comment: 5 pages, 5 figure

    Detecting sub-MeV neutrons in solid plastic scintillator with gamma-ray discrimination

    Get PDF
    We report on recent efforts to design a solid plastic scintillation hodoscope to measure neutron production cross sections at low energies. Our program includes not only the development of the detector itself, but also a set of auxiliary measurements which will help characterize its low-energy response. A novel scintillation counter has been developed to detect sub-MeV neutrons while rejecting gamma-ray backgrounds with good efficiency. The detector uses multiple layers of thin solid scintillator, with optical isolation between the adjacent layers. Incident low-energy neutrons produce ionizing recoil particles which remain within just one of the scintillator layers, while background gamma rays create electrons which most often cross the boundary between layers. By observing the trigger pattern within the layers, most gamma-ray backgrounds can be distinguished from the low-energy neutrons of interest. We report on the results of our Monte Carlo studies of this design, as well as on the operation of a prototype detector unit. We also have undertaken a new measurement of the neutron-proton total cross section below 1 MeV. Calculations of the efficiency for detecting low energy neutrons in plastic scintillator rely on accurate low energy n-p cross sections, yet surprisingly few such data currently exist. New measurements which span the region from 150 to 800 keV neutron (lab) energy are reported and discussed. Additionally, we have measured the light response of BC 418 scintillator for recoil proton energies as low as 100 keV. Recoil protons are produced at a known energy in the scintillator by placing it in a neutron beam and detecting in coincidence the elastically scattered neutrons at fixed angle. Our new results extend the energy range of previous measurements of the light response of solid organic scintillators, and may indicate a significantly modified response at the lowest observed energies.United States. Dept. of Energy (Grant No. DE-FG52-10NA29651

    Functionalized conducting polymers with polyazulene backbone

    Get PDF
    Redox-active anthraquinone and ferrocene functional groups covalently linked to electronically conducting polyazulenes (PA) are accessible by electropolymerization of the C-2 substituted azulenes 1 and 2. The polymer films were characterized by electrochemical and spectroelectrochemical methods

    Nonimmunoglobulin target loci of activation-induced cytidine deaminase (AID) share unique features with immunoglobulin genes.

    Get PDF
    Activation-induced cytidine deaminase (AID) is required for both somatic hypermutation and class-switch recombination in activated B cells. AID is also known to target nonimmunoglobulin genes and introduce mutations or chromosomal translocations, eventually causing tumors. To identify as-yet-unknown AID targets, we screened early AID-induced DNA breaks by using two independent genome-wide approaches. Along with known AID targets, this screen identified a set of unique genes (SNHG3, MALAT1, BCL7A, and CUX1) and confirmed that these loci accumulated mutations as frequently as Ig locus after AID activation. Moreover, these genes share three important characteristics with the Ig gene: translocations in tumors, repetitive sequences, and the epigenetic modification of chromatin by H3K4 trimethylation in the vicinity of cleavage sites

    A survey of genes expressed in adults of the human hookworm, Necator americanus

    Get PDF
    Hookworms are gut-dwelling, blood-feeding nematodes that infect hundreds of millions of people, particularly in the tropics. As part of a program aiming to define novel drug targets and vaccine candidates for human parasitic nematodes, genes expressed in adults of the human hookworm Necator americanus were surveyed by the expressed sequence tag approach. In total 161 new hookworm genes were identified. For the majority of these, a function could be assigned by homology. The dataset includes proteases, protease inhibitors, a lipid binding protein, C-type lectins, an anti-bacterial factor, globins and other genes of interest from a drug or vaccine development viewpoint. Three different classes of small, secreted proteins were identified that may be involved in the host–parasite interaction, including potential potassium channel blocking peptides. One third of the genes were novel. These included highly expressed, secreted (glyco)proteins which may be part of the excretory–secretory products of these important pathogens. Of particular interest are a family of 9 genes with similarity to the immunomodulatory protein, neutrophil inhibitory factor, that may play a role in establishing an immunocompromised niche for this successful parasite.</jats:p
    corecore