463 research outputs found
Third quantization of -type gravity
We examine the third quantization of -type gravity, based on its
effective Lagrangian in the case of a flat Friedmann-Lemaitre-Robertson-Walker
metric. Starting from the effective Lagrangian, we execute a suitable change of
variable and the second quantization, and we obtain the Wheeler-DeWitt
equation. The third quantization of this theory is considered. And the
uncertainty relation of the universe is investigated in the example of
-type gravity, where . It is shown, when the time is late
namely the scale factor of the universe is large, the spacetime does not
contradict to become classical, and, when the time is early namely the scale
factor of the universe is small, the quantum effects are dominating.Comment: 9 pages, Arbitrary constants in (4.19) are changed to arbitrary
functions of . Conclusions are not changed. References are added.
Typos are correcte
The spin polarization of Mn atoms in paramagnetic CuMn alloys induced by a Co layer
Copyright © 2009 American Institute of PhysicsUsing the surface, interface, and element specificity of x-ray resonant magnetic scattering in combination with x-ray magnetic circular dichroism, we have spatially resolved the polarization, and hence the spin accumulation in Mn high susceptibility material in close proximity to a ferromagnetic layer. The magnetic polarization of Mn and Cu 3d electrons in paramagnetic CuMn layers is detected in a Co/Cu x /CuMn structure for varying copper layer thicknesses x . The size of the Mn and Cu L2–3-edge dichroism shows a decrease in the polarization for increasing copper thickness indicating the dominant interfacial nature of the Cu and Mn spin polarization. The Mn polarization appears to be much higher than that of Cu
Spectral Identification of an Ancient Supernova using Light Echoes in the LMC
We report the successful identification of the type of the supernova
responsible for the supernova remnant SNR 0509-675 in the Large Magellanic
Cloud (LMC) using Gemini spectra of surrounding light echoes. The ability to
classify outbursts associated with centuries-old remnants provides a new window
into several aspects of supernova research and is likely to be successful in
providing new constraints on additional LMC supernovae as well as their
historical counterparts in the Milky Way Galaxy (MWG). The combined spectrum of
echo light from SNR 0509-675 shows broad emission and absorption lines
consistent with a supernova (SN) spectrum. We create a spectral library
consisting of 26 SNe Ia and 6 SN Ib/c that are time-integrated, dust-scattered
by LMC dust, and reddened by the LMC and MWG. We fit these SN templates to the
observed light echo spectrum using minimization as well as correlation
techniques, and we find that overluminous 91T-like SNe Ia with \dm15<0.9
match the observed spectrum best.Comment: 12 pages, 18 Figures, to be published in Ap
Improved cosmological constraints on the curvature and equation of state of dark energy
We apply the Constitution compilation of 397 supernova Ia, the baryon
acoustic oscillation measurements including the parameter, the distance
ratio and the radial data, the five-year Wilkinson microwave anisotropy probe
and the Hubble parameter data to study the geometry of the universe and the
property of dark energy by using the popular Chevallier-Polarski-Linder and
Jassal-Bagla-Padmanabhan parameterizations. We compare the simple
method of joined contour estimation and the Monte Carlo Markov chain method,
and find that it is necessary to make the marginalized analysis on the error
estimation. The probabilities of and in the
Chevallier-Polarski-Linder model are skew distributions, and the marginalized
errors are ,
, , and
. For the Jassal-Bagla-Padmanabhan model, the
marginalized errors are ,
, , and
. The equation of state parameter of dark energy
is negative in the redshift range at more than level.
The flat CDM model is consistent with the current observational data
at the level.Comment: 10 figures, 12 pages, Classical and Quantum Gravity in press; v2 to
match the pulished versio
Crystallization of Ge2Sb2Te5 films by amplified femtosecond optical pulses
Copyright © 2012 American Institute of PhysicsThe phase transition between the amorphous and crystalline states of Ge2Sb2Te5 has been studied by exposure of thin films to series of 60 femtosecond (fs) amplified laser pulses. The analysis of microscope images of marks of tens of microns in size provide an opportunity to examine the effect of a continuous range of optical fluence. For a fixed number of pulses, the dependence of the area of the crystalline mark upon the fluence is well described by simple algebraic results that provide strong evidence that thermal transport within the sample is one-dimensional (vertical). The crystalline mark area was thus defined by the incident fs laser beam profile rather than by lateral heat diffusion, with a sharp transition between the crystalline and amorphous materials as confirmed from line scans of the microscope images. A simplified, one-dimensional model that accounts for optical absorption, thermal transport and thermally activated crystallization provides values of the optical reflectivity and mark area that are in very good quantitative agreement with the experimental data, further justifying the one-dimensional heat flow assumption. Typically, for fluences below the damage threshold, the crystalline mark has annular shape, with the fluence at the centre of the irradiated mark being sufficient to induce melting. The fluence at the centre of the mark was correlated with the melt depth from the thermal model to correctly predict the observed melt fluence thresholds and to explain the closure and persistence of the annular crystalline marks as functions of laser fluence and pulse number. A solid elliptical mark may be obtained for smaller fluences. The analysis of marks made by amplified fs pulses present a new and effective means of observing the crystallization dynamics of phase-change material at elevated temperatures near the melting point, which provided estimates of the growth velocity in the range 7-9 m/s. Furthermore, finer control over the crystallization process in phase-change media can be obtained by controlling the number of pulses which, along with the laser fluence, can be tailored to any medium stack with relaxed restrictions on the thermal properties of the layers in the stack
The Luminous and Carbon-Rich Supernova 2006gz: A Double Degenerate Merger?
Spectra and light curves of SN 2006gz show the strongest signature of
unburned carbon and one of the slowest fading light curves ever seen in a type
Ia event (Delta m_15 = 0.69 +/- 0.04). The early-time Si II velocity is low,
implying it was slowed by an envelope of unburned material. Our best estimate
of the luminosity implies M_V = -19.74 and the production of ~ 1.2 M_sun of
56Ni. This suggests a super-Chandrasekhar mass progenitor. A double degenerate
merger is consistent with these observations.Comment: Accepted for publication in ApJL (5 pages, 4 figures). UBVr'i' light
curves, UVOIR light curves, and spectra available at
http://www.cfa.harvard.edu/supernova/SN2006g
`Pure' Supernovae and Accelerated Expansion of the Universe
A special class of type Ia supernovae that is not subject to ordinary and
additional intragalactic gray absorption and chemical evolution has been
identified. Analysis of the Hubble diagrams constructed for these supernovae
confirms the accelerated expansion of the Universe irrespective of the chemical
evolution and possible gray absorption in galaxies.Comment: 2 figures, 1 tabl
Average luminosity distance in inhomogeneous universes
The paper studies the correction to the distance modulus induced by
inhomogeneities and averaged over all directions from a given observer. The
inhomogeneities are modeled as mass-compensated voids in random or regular
lattices within Swiss-cheese universes. Void radii below 300 Mpc are
considered, which are supported by current redshift surveys and limited by the
recently observed imprint such voids leave on CMB. The averaging over all
directions, performed by numerical ray tracing, is non-perturbative and
includes the supernovas inside the voids. Voids aligning along a certain
direction produce a cumulative gravitational lensing correction that increases
with their number. Such corrections are destroyed by the averaging over all
directions, even in non-randomized simple cubic void lattices. At low
redshifts, the average correction is not zero but decays with the peculiar
velocities and redshift. Its upper bound is provided by the maximal average
correction which assumes no random cancelations between different voids. It is
described well by a linear perturbation formula and, for the voids considered,
is 20% of the correction corresponding to the maximal peculiar velocity. The
average correction calculated in random and simple cubic void lattices is
severely damped below the predicted maximal one after a single void diameter.
That is traced to cancellations between the corrections from the fronts and
backs of different voids. All that implies that voids cannot imitate the effect
of dark energy unless they have radii and peculiar velocities much larger than
the currently observed. The results obtained allow one to readily predict the
redshift above which the direction-averaged fluctuation in the Hubble diagram
falls below a required precision and suggest a method to extract the background
Hubble constant from low redshift data without the need to correct for peculiar
velocities.Comment: 34 pages, 21 figures, matches the version accepted in JCA
Resonant enhancement of damping within the free layer of a microscale magnetic tunnel valve
Copyright © 2015 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Applied Physics Vol. 117, article 17B301 and may be found at http://dx.doi.org/10.1063/1.4907701Picosecond magnetization dynamics in the free and pinned layers of a microscale magnetic tunnel valve have been studied using time-resolved scanning Kerr microscopy. A comparison of the observed dynamics with those of individual free and pinned layers allowed the effect of interlayer coupling to be identified. A weak interlayer coupling in the tunnel valve continuous film reference sample was detected in bulk magnetometry measurements, while focused Kerr magnetometry showed that the coupling was well maintained in the patterned structure. In the tunnel valve, the free layer precession was observed to have reduced amplitude and an enhanced relaxation. During magnetization reversal in the pinned layer, its frequency approached that of the low frequency mode associated with the free layer. At the pinned layer switching field, the linewidth of the free layer became similar to that of the pinned layer. The similarity in their frequencies promotes the formation of precessional modes that exhibit strong collective properties such as frequency shifting and enhanced linewidth, while inhomogeneous magnetization of the pinned layer during reversal may also play a role in these observations. The collective character of precessional dynamics associated with mixing of the free and pinned layer magnetization dynamics must be accounted for even in tunnel valves with a small interlayer coupling.Engineering and Physical Sciences Research Council (EPSRC)European Community's Seventh Framework Programme (FP7/2007-2013
- …
