63,598 research outputs found

    Numerical Results for the Ground-State Interface in a Random Medium

    Get PDF
    The problem of determining the ground state of a dd-dimensional interface embedded in a (d+1)(d+1)-dimensional random medium is treated numerically. Using a minimum-cut algorithm, the exact ground states can be found for a number of problems for which other numerical methods are inexact and slow. In particular, results are presented for the roughness exponents and ground-state energy fluctuations in a random bond Ising model. It is found that the roughness exponent ζ=0.41±0.01,0.22±0.01\zeta = 0.41 \pm 0.01, 0.22 \pm 0.01, with the related energy exponent being θ=0.84±0.03,1.45±0.04\theta = 0.84 \pm 0.03, 1.45 \pm 0.04, in d=2,3d = 2, 3, respectively. These results are compared with previous analytical and numerical estimates.Comment: 10 pages, REVTEX3.0; 3 ps files (separate:tar/gzip/uuencoded) for figure

    Fractal Droplets in Two Dimensional Spin Glasses

    Full text link
    The two-dimensional Edwards-Anderson model with Gaussian bond distribution is investigated at T=0 with a numerical method. Droplet excitations are directly observed. It turns out that the averaged volume of droplets is proportional to l^D with D = 1.80(2) where l is the spanning length of droplets, revealing their fractal nature. The exponent characterizing the l dependence of the droplet excitation energy is estimated to be -0.42(4), clearly different from the stiffness exponent for domain wall excitations.Comment: 4 pages 4 figure

    On the Spectrum and Nature of the Peculiar Type Ia Supernova 1991T

    Get PDF
    A parameterized supernova synthetic-spectrum code is used to study line identifications in the photospheric-phase spectra of the peculiar Type Ia SN 1991T, and to extract some constraints on the composition structure of the ejected matter. The inferred composition structure is not like that of any hydrodynamical model for Type Ia supernovae. Evidence that SN 1991T was overluminous for an SN Ia is presented, and it is suggested that this peculiar event probably was a substantially super-Chandrasekhar explosion that resulted from the merger of two white dwarfs.Comment: 1 text, 7 figures, submitted to MNRA

    Fisher's zeros of quasi-Gaussian densities of states

    Full text link
    We discuss apparent paradoxes regarding the location of the zeros of the partition function in the complex β\beta plane (Fisher's zeros) of a pure SU(2) lattice gauge theory in 4 dimensions. We propose a new criterion to draw the region of the complex β\beta plane where reweighting methods can be trusted when the density of states is almost but not exactly Gaussian. We propose new methods to infer the existence of zeros outside of this region. We demonstrate the reliability of these proposals with quasi Gaussian Monte Carlo distributions where the locations of the zeros can be calculated by independent numerical methods. The results are presented in such way that the methods can be applied for general lattice models. Applications to specific lattice models will be discussed in a separate publication.Comment: 11 pages, 21 figures, with minor correction

    Numerical Study on Aging Dynamics in the 3D Ising Spin-Glass Model. II. Quasi-Equilibrium Regime of Spin Auto-Correlation Function

    Full text link
    Using Monte Carlo simulations, we have studied isothermal aging of three-dimensional Ising spin-glass model focusing on quasi-equilibrium behavior of the spin auto-correlation function. Weak violation of the time translational invariance in the quasi-equilibrium regime is analyzed in terms of {\it effective stiffness} for droplet excitations in the presence of domain walls. Within the range of computational time window, we have confirmed that the effective stiffness follows the expected scaling behavior with respect to the characteristic length scales associated with droplet excitations and domain walls, whose growth law has been extracted from our simulated data. Implication of the results are discussed in relation to experimental works on ac susceptibilities.Comment: 18 pages, 6 figure

    Permutation-Symmetric Multicritical Points in Random Antiferromagnetic Spin Chains

    Full text link
    The low-energy properties of a system at a critical point may have additional symmetries not present in the microscopic Hamiltonian. This letter presents the theory of a class of multicritical points that provide an interesting example of this in the phase diagrams of random antiferromagnetic spin chains. One case provides an analytic theory of the quantum critical point in the random spin-3/2 chain, studied in recent work by Refael, Kehrein and Fisher (cond-mat/0111295).Comment: Revtex, 4 pages (2 column format), 2 eps figure

    An exactly soluble noisy traveling wave equation appearing in the problem of directed polymers in a random medium

    Full text link
    We calculate exactly the velocity and diffusion constant of a microscopic stochastic model of NN evolving particles which can be described by a noisy traveling wave equation with a noise of order N1/2N^{-1/2}. Our model can be viewed as the infinite range limit of a directed polymer in random medium with NN sites in the transverse direction. Despite some peculiarities of the traveling wave equations in the absence of noise, our exact solution allows us to test the validity of a simple cutoff approximation and to show that, in the weak noise limit, the position of the front can be completely described by the effect of the noise on the first particle.Comment: 5 page

    On the speed of pulled fronts with a cutoff

    Full text link
    We study the effect of a small cutoff ϵ\epsilon on the velocity of a pulled front in one dimension by means of a variational principle. We obtain a lower bound on the speed dependent on the cutoff, and for which the two leading order terms correspond to the Brunet Derrida expression. To do so we cast a known variational principle for the speed of propagation of fronts in new variables which makes it more suitable for applications.Comment: 12 pages no figure
    corecore