1,040 research outputs found

    Methods for assimilating blood velocity measures in hemodynamics simulations: Preliminary results

    Get PDF
    AbstractNew measurement devices and techniques in biomedical images provide medical doctors with a huge amount of data on blood flow and vascular morphologies. These data are crucial for performing (and validating) individualbased simulations of hemodynamics (see e.g. [1]). Availability of velocity measures inside a region of interest poses problems that are new to the community of computational hemodynamics and however well known in other engineering fields. In particular, integration of data (measures) and numerical simulations has been an issue of utmost relevance in the prediction of fluid geophysics phenomena and, in particular, weather forecast. In computational hemodynamics a mathematically sound assimilation of data and numerical simulations is needed, on one hand for improving reliability of numerical results, on the other one for filtering noise and measurements errors. In this paper we consider and compare some possible methods for integrating numerical simulations and velocity measures in some internal points of the computational domain. Preliminary numerical results for a 2D Stokes problem are presented both for noise free and noisy data, investigating convergence rate and noise sensitivity

    Susceptibility of the QCD vacuum to CP-odd electromagnetic background fields

    Full text link
    We investigate two flavor QCD in presence of CP-odd electromagnetic background fields and determine, by means of lattice QCD simulations, the induced effective theta term to the first order in the scalar product of E and B. We employ a rooted staggered discretization and study lattice spacings down to 0.1 fm and Goldstone pion masses around 480 MeV. In order to deal with a positive measure, we consider purely imaginary electric fields and real magnetic fields, then exploiting analytic continuation. Our results are relevant to a description of the effective pseudoscalar QED-QCD interactions.Comment: 5 pages, 4 figures, 1 table. New data and references added. Matches the published versio

    Analyticity in theta on the lattice and the large volume limit of the topological susceptibility

    Get PDF
    Non-analyticity of QCD with a \theta term at \theta=0 may signal a spontaneous breaking of both parity and time reversal invariance. We address this issue by investigating the large volume limit of the topological susceptibility χ\chi in pure SU(3) gauge theory. We obtain an upper bound for the symmetry breaking order parameter and, as a byproduct, the value \chi=(173.4(+/- 0.5)(+/- 1.2)(+1.1 / -0.2) MeV)^4 at \beta=6 (a approx= 0.1 fermi). The errors are the statistical error from our data, the one derived from the value used for \Lambda_L and an estimate of the systematic error respectively.Comment: 15 pages, corrected typos, added 1 reference, minor changes in tex

    Influence of voluntary standards and design modifications on trampoline injury in Victoria, Australia

    Full text link
    © 2015 BMJ Publishing Group. All rights reserved. Purpose To examine the influence of the voluntary Australian trampoline standard (AS 4989-2006) and market-driven design modifications on relevant trampoline injuries. Methods Trend and intervention analysis on frequencies and proportions of hospital-treated trampoline-related injury in Victoria, Australia, extracted from the Victorian Emergency Minimum Dataset from 1 July 1999 to 30 June 2013. The injuries relevant to the AS were contact with spring and frame, and multipleuser injury. Falls from trampolines were relevant for netted trampolines, a market-driven modification. Results Frequency of all trampoline injuries increased by 11.4% (95% CI 10.0% to 11.7%) on average each year. Spring and frame, and fall injuries increased to a lesser extent (8.7%, 95% CI 6.9% to 9.8% and 7.3%, 95% CI 5.8% to 8.3%, respectively). Multiple-user injuries increased by 21.0% (95% CI 16.3% to 21.9%). As a proportion of all trampoline injuries, spring and frame injury and falls injury decreased, while multipleuser injuries increased. The intervention analysis showed no significant change in spring and frame injuries associated with the AS (p=0.17). A significant increase was found for multiple-user injuries (p=0.01), in particular for the 0-year to 4-year age group (p<0.0001), post 2007. Conclusions There was little evidence for an effect of the voluntary standard on spring and frame injury and none for multiple-user injury. Netted trampolines appear to be associated with a decrease in falls from trampolines but an increase in injuries to multiple users. A mandated trampoline safety standard and a safety campaign including warnings about multiple users is recommended. Continued monitoring of injury data will be required

    SXP 7.92: A Recently Rediscovered Be/X-ray Binary in the Small Magellanic Cloud, Viewed Edge On

    Get PDF
    We present a detailed optical and X-ray study of the 2013 outburst of the Small Magellanic Cloud Be/X-ray binary SXP 7.92, as well as an overview of the last 18 years of observations from OGLE (Optical Gravitational Lensing Experiment), RXTE, Chandra and XMM-Newton. We revise the position of this source to RA(J2000) = 00:57:58.4, Dec(J2000) = −72:22:29.5 with a 1σ uncertainty of 1.5 arcsec, correcting the previously reported position by Coe et al. by more than 20 arcmin. We identify and spectrally classify the correct counterpart as a B1Ve star. The optical spectrum is distinguished by an uncharacteristically deep narrow Balmer series, with the Hα line in particular having a distinctive shell profile, i.e. a deep absorption core embedded in an emission line. We interpret this as evidence that we are viewing the system edge on and are seeing self-obscuration of the circumstellar disc. We derive an optical period for the system of 40.0 ± 0.3 d, which we interpret as the orbital period, and present several mechanisms to describe the X-ray/optical behaviour in the recent outburst, in particular the ‘flares'and ‘dips’ seen in the optical light curve, including a transient accretion disc and an elongated precessing disc

    Holographic Roberge-Weiss Transitions

    Full text link
    We investigate N=4 SYM coupled to fundamental flavours at nonzero imaginary quark chemical potential in the strong coupling and large N limit, using gauge/gravity duality applied to the D3-D7 system, treating flavours in the probe approximation. The interplay between Z(N) symmetry and the imaginary chemical potential yields a series of first-order Roberge-Weiss transitions. An additional thermal transition separates phases where quarks are bound/unbound into mesons. This results in a set of Roberge-Weiss endpoints: we establish that these are triple points, determine the Roberge-Weiss temperature, give the curvature of the phase boundaries and confirm that the theory is analytic in mu^2 when mu^2~0.Comment: 37 pages, 13 figures; minor comments added, to appear in JHE

    Gauge-invariant quark-antiquark nonlocal condensates in lattice QCD

    Full text link
    We study, by numerical simulations on a lattice, the behaviour of the gauge-invariant quark-antiquark nonlocal condensates in the QCD vacuum with dynamical fermions. A determination is also done in the quenched approximation and the results are compared with the full-QCD case. The fermionic correlation length is extracted and compared with the analogous gluonic quantity.Comment: 14 pages, LaTeX file, + 6 PS figure
    • 

    corecore