1,462 research outputs found

    Power density spectrum of NGC 5548 and the nature of its variability

    Get PDF
    We derive power density spectra in the optical and X-ray band in the timescale range from several years down to \sim a day. We suggest that the optical power density spectrum consists of two separate components: long timescale variations and short timescale variations, with the dividing timescale around 100 days. The shape of the short timescale component is similar to X-ray power density spectrum which is consistent with the interpretation of short timescale optical variations being caused by X-ray reprocessing. We show that the observed optical long timescale variability is consistent with thermal pulsations of the accretion disc.Comment: Accepted for publication in The Monthly Notices of the Royal Astronomical Societ

    Time-resolved multicolour photometry of bright B-type variable stars in Scorpius

    Full text link
    The first two of a total of six nano-satellites that will constitute the BRITE-Constellation space photometry mission have recently been launched successfully. In preparation for this project, we carried out time-resolved colour photometry in a field that is an excellent candidate for BRITE measurements from space. We acquired 117 h of Stromgren uvy data during 19 nights. Our targets comprised the Beta Cephei stars Kappa and Lambda Sco, the eclipsing binary Mu 1 Sco, and the variable super/hypergiant Zeta 1 Sco. For Kappa Sco, a photometric mode identification in combination with results from the spectroscopic literature suggests a dominant (l, m) = (1, -1) Beta Cephei-type pulsation mode of the primary star. The longer period of the star may be a rotational variation or a g-mode pulsation. For Lambda Sco, we recover the known dominant Beta Cephei pulsation, a longer-period variation, and observed part of an eclipse. Lack of ultraviolet data precludes mode identification for this star. We noticed that the spectroscopic orbital ephemeris of the closer pair in this triple system is inconsistent with eclipse timings and propose a refined value for the orbital period of the closer pair of 5.95189 +/- 0.00003 d. We also argue that the components of the Lambda Sco system are some 30% more massive than previously thought. The binary light curve solution of Mu 1 Sco requires inclusion of the irradiation effect to explain the u light curve, and the system could show additional low amplitude variations on top of the orbital light changes. Zeta 1 Sco shows long-term variability on a time scale of at least two weeks that we prefer to interpret in terms of a variable wind or strange mode pulsations.Comment: 7 pages, 7 figures, 3 Tables, accepted by A&

    The structure and radiation spectra of illuminated accretion discs in AGN. I. Moderate illumination

    Get PDF
    We present detailed computations of the vertical structure of an accretion disc illuminated by hard X-ray radiation with the code {\sc titan-noar} suitable for Compton thick media. The energy generated via accretion is dissipated partially in the cold disc as well as in the X-ray source. We study the differences between the case where the X-ray source is in the form of a lamp post above the accretion disc and the case of a heavy corona. We consider radiative heating via Comptonization together with heating via photo-absorption on numerous heavy elements as carbon, oxygen, silicon, iron. The transfer in lines is precisely calculated. A better description of the heating/cooling through the inclusion of line transfer, a correct description of the temperature in the deeper layers, a correct description of the entire disc vertical structure, as well as the study of the possible coronal pressure effect, constitute an improvement in comparison to previous works. We show that exact calculations of hydrostatic equilibrium and determination of the disc thickness has a crucial impact on the optical depth of the hot illuminated zone. We assume a moderate illumination where the viscous flux equals the X-ray radiation flux. A highly ionized skin is created in the lamp post model, with the outgoing spectrum containing many emission lines and ionization edges in emission or absorption in the soft X-ray domain, as well as an iron line at 7\sim 7 keV consisting of a blend of low ionization line from the deepest layers and hydrogen and helium like resonance line from the upper layers, and almost no absorption edge, contrary to the case of a slab of constant density.A full heavy corona completely suppresses the highly ionized zone on the top of the accretion disc and in such case the spectrum is featureless.Comment: 16 pages, 20 figures, corrected two sentences, accepted by MNRA

    Response of the warm absorber cloud to a variable nuclear flux in active galactic nuclei

    Get PDF
    Recent modeling of the warm absorber in active galactic nuclei has proved the usefulness of constant total (gas plus radiation) pressure models, which are highly stratified in temperature and density. We explore the consistency of those models when the typical variation of the flux from the central source is taken into account. We perform a variability study of the warm absorber response, based on timescales and our photoionization code TITAN. We show that the ionization and recombination timescales are much shorter than the dynamical timescale. Clouds very close to the central black hole will maintain their equilibrium since the characteristic variability timescales of the nuclear source are longer than cloud timescales. For more distant clouds, the density structure has no time to vary, in response to the variations of the temperature or ionization structure, and such clouds will show the departure from the constant pressure equilibrium. We explore the impact of this departure on the observed properties of the transmitted spectrum and soft X-ray variability: (i) non uniform velocities, of the order of sound speed, appear due to pressure gradients, up to typical values of 100 km/s. These velocities lead to the broadening of lines. This broadening is usually observed and very difficult to explain otherwise. (ii) Energy-dependent fractional variability amplitude in soft X-ray range has a broader hump around ~ 1-2 keV, and (iv) the plot of the equivalent hydrogen column density vs. ionization parameter is steeper than for equilibrium clouds. The results have the character of a preliminary study and should be supplemented in the future with full time-dependent radiation transfer and dynamical computations.Comment: 9 pages, 7 figures, accepted for publication by Astronomy & Astrophysic
    corecore