1,268 research outputs found
The structure of degradable quantum channels
Degradable quantum channels are among the only channels whose quantum and
private classical capacities are known. As such, determining the structure of
these channels is a pressing open question in quantum information theory. We
give a comprehensive review of what is currently known about the structure of
degradable quantum channels, including a number of new results as well as
alternate proofs of some known results. In the case of qubits, we provide a
complete characterization of all degradable channels with two dimensional
output, give a new proof that a qubit channel with two Kraus operators is
either degradable or anti-degradable and present a complete description of
anti-degradable unital qubit channels with a new proof.
For higher output dimensions we explore the relationship between the output
and environment dimensions ( and respectively) of degradable
channels. For several broad classes of channels we show that they can be
modeled with a environment that is "small" in the sense . Perhaps
surprisingly, we also present examples of degradable channels with ``large''
environments, in the sense that the minimal dimension . Indeed, one
can have .
In the case of channels with diagonal Kraus operators, we describe the
subclass which are complements of entanglement breaking channels. We also
obtain a number of results for channels in the convex hull of conjugations with
generalized Pauli matrices. However, a number of open questions remain about
these channels and the more general case of random unitary channels.Comment: 42 pages, 3 figures, Web and paper abstract differ; (v2 contains only
minor typo corrections
Extracting dynamical equations from experimental data is NP-hard
The behavior of any physical system is governed by its underlying dynamical
equations. Much of physics is concerned with discovering these dynamical
equations and understanding their consequences. In this work, we show that,
remarkably, identifying the underlying dynamical equation from any amount of
experimental data, however precise, is a provably computationally hard problem
(it is NP-hard), both for classical and quantum mechanical systems. As a
by-product of this work, we give complexity-theoretic answers to both the
quantum and classical embedding problems, two long-standing open problems in
mathematics (the classical problem, in particular, dating back over 70 years).Comment: For mathematical details, see arXiv:0908.2128[math-ph]. v2: final
version, accepted in Phys. Rev. Let
Improving zero-error classical communication with entanglement
Given one or more uses of a classical channel, only a certain number of
messages can be transmitted with zero probability of error. The study of this
number and its asymptotic behaviour constitutes the field of classical
zero-error information theory, the quantum generalisation of which has started
to develop recently. We show that, given a single use of certain classical
channels, entangled states of a system shared by the sender and receiver can be
used to increase the number of (classical) messages which can be sent with no
chance of error. In particular, we show how to construct such a channel based
on any proof of the Bell-Kochen-Specker theorem. This is a new example of the
use of quantum effects to improve the performance of a classical task. We
investigate the connection between this phenomenon and that of
``pseudo-telepathy'' games. The use of generalised non-signalling correlations
to assist in this task is also considered. In this case, a particularly elegant
theory results and, remarkably, it is sometimes possible to transmit
information with zero-error using a channel with no unassisted zero-error
capacity.Comment: 6 pages, 2 figures. Version 2 is the same as the journal version plus
figure 1 and the non-signalling box exampl
Quasi-specular albedo of cold neutrons from powder of nanoparticles
We predicted and observed for the first time the quasi-specular albedo of
cold neutrons at small incidence angles from a powder of nanoparticles. This
albedo (reflection) is due to multiple neutron small-angle scattering. The
reflection angle as well as the half-width of angular distribution of reflected
neutrons is approximately equal to the incidence angle. The measured reflection
probability was equal to ~30% within the detector angular size that corresponds
to 40-50% total calculated probability of quasi-specular reflection
Square vortex lattice at anomalously low magnetic fields in electron-doped NdCeCuO
We report here on the first direct observations of the vortex lattice in the
bulk of electron-doped NdCeCuO single crystals. Using
small angle neutron scattering, we have observed a square vortex lattice with
the nearest-neighbors oriented at 45 from the Cu-O bond direction,
which is consistent with theories based on the d-wave superconducting gap.
However, the square symmetry persists down to unusually low magnetic fields.
Moreover, the diffracted intensity from the vortex lattice is found to decrease
rapidly with increasing magnetic field.Comment: 4 pages, 4 Figures, accepted for publication in Phys. Rev. Let
Thermal fluctuations and disorder effects in vortex lattices
We calculate using loop expansion the effect of fluctuations on the structure
function and magnetization of the vortex lattice and compare it with existing
MC results. In addition to renormalization of the height of the Bragg peaks of
the structure function, there appears a characteristic saddle shape ''halos''
around the peaks. The effect of disorder on magnetization is also calculated.
All the infrared divergencies related to soft shear cancel.Comment: 10 pages, revtex file, one figur
The pairing state in KFe2As2 studied by measurements of the magnetic vortex lattice
Understanding the mechanism and symmetry of electron pairing in iron-based
superconductors represents an important challenge in condensed matter physics
[1-3]. The observation of magnetic flux lines - "vortices" - in a
superconductor can contribute to this issue, because the spatial variation of
magnetic field reflects the pairing. Unlike many other iron pnictides, our
KFe2As2 crystals have very weak vortex pinning, allowing
small-angle-neutron-scattering (SANS) observations of the intrinsic vortex
lattice (VL). We observe nearly isotropic hexagonal packing of vortices,
without VL-symmetry transitions up to high fields along the fourfold c-axis of
the crystals, indicating rather small anisotropy of the superconducting
properties around this axis. This rules out gap nodes parallel to the c-axis,
and thus d-wave and also anisotropic s-wave pairing [2, 3]. The strong
temperature-dependence of the intensity down to T<<Tc indicates either widely
different full gaps on different Fermi surface sheets, or nodal lines
perpendicular to the axis.Comment: 13 pages, 3 figure
Flux-Line Lattice Structures in Untwinned YBa2Cu3O
A small angle neutron scattering study of the flux-line lattice in a large
single crystal of untwinned YBa2Cu3O is presented. In fields parallel to the
c-axis, diffraction spots are observed corresponding to four orientations of a
hexagonal lattice, distorted by the a-b anisotropy. A value for the anisotropy,
the penetration depth ratio, of 1.18(2) was obtained. The high quality of the
data is such that second order diffraction is observed, indicating a well
ordered FLL. With the field at 33 degrees to c a field dependent re-orientation
of the lattice is observed around 3T.Comment: 4 pages, 4 figure
Field-driven topological glass transition in a model flux line lattice
We show that the flux line lattice in a model layered HTSC becomes unstable
above a critical magnetic field with respect to a plastic deformation via
penetration of pairs of point-like disclination defects. The instability is
characterized by the competition between the elastic and the pinning energies
and is essentially assisted by softening of the lattice induced by a
dimensional crossover of the fluctuations as field increases. We confirm
through a computer simulation that this indeed may lead to a phase transition
from crystalline order at low fields to a topologically disordered phase at
higher fields. We propose that this mechanism provides a model of the low
temperature field--driven disordering transition observed in neutron
diffraction experiments on single crystals.Comment: 11 pages, 4 figures available upon request via snail mail from
[email protected]
- …
