10 research outputs found

    Machine learning-enabled maternal risk assessment for women with pre-eclampsia (the PIERS-ML model) : a modelling study

    Get PDF
    Background Affecting 2–4% of pregnancies, pre-eclampsia is a leading cause of maternal death and morbidity worldwide. Using routinely available data, we aimed to develop and validate a novel machine learning-based and clinical setting-responsive time-of-disease model to rule out and rule in adverse maternal outcomes in women presenting with pre-eclampsia. Methods We used health system, demographic, and clinical data from the day of first assessment with pre-eclampsia to predict a Delphi-derived composite outcome of maternal mortality or severe morbidity within 2 days. Machine learning methods, multiple imputation, and ten-fold cross-validation were used to fit models on a development dataset (75% of combined published data of 8843 patients from 11 low-income, middle-income, and high-income countries). Validation was undertaken on the unseen 25%, and an additional external validation was performed in 2901 inpatient women admitted with pre-eclampsia to two hospitals in south-east England. Predictive risk accuracy was determined by area-under-the-receiver-operator characteristic (AUROC), and risk categories were data-driven and defined by negative (–LR) and positive (+LR) likelihood ratios. Findings Of 8843 participants, 590 (6·7%) developed the composite adverse maternal outcome within 2 days, 813 (9·2%) within 7 days, and 1083 (12·2%) at any time. An 18-variable random forest-based prediction model, PIERS-ML, was accurate (AUROC 0·80 [95% CI 0·76–0·84] vs the currently used logistic regression model, fullPIERS: AUROC 0·68 [0·63–0·74]) and categorised women into very low risk (–LR 0·2 and +LR 10·0; 11 [1·0%] women). Adverse maternal event rates were 0% for very low risk, 2% for low risk, 5% for moderate risk, 26% for high risk, and 91% for very high risk within 48 h. The 2901 women in the external validation dataset were accurately classified as being at very low risk (0% with outcomes), low risk (1%), moderate risk (4%), high risk (33%), or very high risk (67%). Interpretation The PIERS-ML model improves identification of women with pre-eclampsia who are at lowest and greatest risk of severe adverse maternal outcomes within 2 days of assessment, and can support provision of accurate guidance to women, their families, and their maternity care providers

    Patterning and substrate adhesion efficiencies of solid films photodeposited from the liquid phase

    No full text
    We experimentally and theoretically investigated the patterning and adhesion, always assumed and almost never discussed, of coatings photochemically deposited on substrates from photoactive solutions of different compositions and pHs. Considering the well-known deposition of Cr(III) layers from potassium chromate solutions, we analyzed the morphology and properties of the deposit when induced by two interfering continuous Ar+ laser waves. The solubility, patterning, and adhesion are investigated in both organic (acetic acid) and inorganic (HCl) acidic solutions. The photodeposition process is also compared for several types of substrates usually found in the literature (glass, silanized glass, PMMA, silicon wafer, indium tin oxide (ITO), and stainless steel). We demonstrate the major role played by the interaction between the generated coating and the substrate and propose a strategy to find the best conditions for photochemical deposition from the liquid phase, an approach that is mandatory for any application requiring optical recording developments
    corecore