
www.thelancet.com/digital-health   Vol 6   April 2024	 e238

Articles

Lancet Digit Health 2024; 
6: e238–50

*Members listed in the appendix 
(pp 2–4)

Department of Mathematics 
and Statistics 
(T Montgomery-Csobán BSc Hons, 
K Kavanagh PhD, 
Prof C Robertson PhD, 
S J E Barry PhD) and Department 
of Electronic and Electrical 
Engineering (P Murray PhD), 
University of Strathclyde, 
Glasgow, UK; Department of 
Epidemiology, Biostatistics, 
and Occupational Health, 
McGill University, Montréal, 
QC, Canada (U Vivian Ukah PhD); 
School of Population and 
Public Health (B A Payne PhD) 
and Department of Obstetrics 
and Gynaecology 
(J A Hutcheon PhD, 
Prof L A Magee MD Hons, 
Prof P von Dadelszen DPhil) and 
Institute of Women and 
Children’s Health 
(J A Hutcheon), University of 
British Columbia, Vancouver, 
BC, Canada; Harris Birthright 
Research Centre for Fetal 
Medicine 
(Prof K H Nicolaides MD, 
A Syngelaki PhD, O Ionescu MD), 
King’s College Hospital, 
London, UK; Fetal Medicine 
Unit, Medway Maritime 
Hospital, Gillingham, UK 
(O Ionescu, Prof R Akolekar MD); 
Institute of Medical Sciences, 
Canterbury Christ Church 
University, Chatham, UK 
(Prof R Akolekar); Department 
of Women and Children’s 
Health, School of Life Course 
and Population Sciences, King’s 
College London, London UK 
(Prof L A Magee, 
Prof P von Dadelszen)

Correspondence to: 
Prof Peter von Dadelszen, 
Department of Women and 
Children’s Health, School of Life 
Course and Population Sciences, 
King’s College London SE1 1UL, UK 
pvd@kcl.ac.uk

Machine learning-enabled maternal risk assessment for 
women with pre-eclampsia (the PIERS-ML model): 
a modelling study 
Tünde Montgomery-Csobán, Kimberley Kavanagh, Paul Murray, Chris Robertson, Sarah J E Barry, U Vivian Ukah, Beth A Payne, 
Kypros H Nicolaides, Argyro Syngelaki, Olivia Ionescu, Ranjit Akolekar, Jennifer A Hutcheon, Laura A Magee, Peter von Dadelszen, on behalf of the 
PIERS Consortium* 

Summary
Background Affecting 2–4% of pregnancies, pre-eclampsia is a leading cause of maternal death and morbidity 
worldwide. Using routinely available data, we aimed to develop and validate a novel machine learning-based and 
clinical setting-responsive time-of-disease model to rule out and rule in adverse maternal outcomes in women 
presenting with pre-eclampsia.

Methods We used health system, demographic, and clinical data from the day of first assessment with pre-eclampsia 
to predict a Delphi-derived composite outcome of maternal mortality or severe morbidity within 2 days. Machine 
learning methods, multiple imputation, and ten-fold cross-validation were used to fit models on a development 
dataset (75% of combined published data of 8843 patients from 11 low-income, middle-income, and high-income 
countries). Validation was undertaken on the unseen 25%, and an additional external validation was performed in 
2901 inpatient women admitted with pre-eclampsia to two hospitals in south-east England. Predictive risk accuracy 
was determined by area-under-the-receiver-operator characteristic (AUROC), and risk categories were data-driven and 
defined by negative (–LR) and positive (+LR) likelihood ratios.

Findings Of 8843 participants, 590 (6·7%) developed the composite adverse maternal outcome within 2 days, 
813 (9·2%) within 7 days, and 1083 (12·2%) at any time. An 18-variable random forest-based prediction model, PIERS-
ML, was accurate (AUROC 0·80 [95% CI 0·76–0·84] vs the currently used logistic regression model, fullPIERS: 
AUROC 0·68 [0·63–0·74]) and categorised women into very low risk (–LR <0·1; eight [0·7%] of 1103 women), low 
risk (–LR 0·1 to 0·2; 321 [29·1%] women), moderate risk (–LR >0·2 and +LR <5·0; 676 [61·3%] women), high risk 
(+LR 5·0 to 10·0, 87 [7·9%] women), and very high risk (+LR >10·0; 11 [1·0%] women). Adverse maternal event rates 
were 0% for very low risk, 2% for low risk, 5% for moderate risk, 26% for high risk, and 91% for very high risk within 
48 h. The 2901 women in the external validation dataset were accurately classified as being at very low risk (0% with 
outcomes), low risk (1%), moderate risk (4%), high risk (33%), or very high risk (67%).

Interpretation The PIERS-ML model improves identification of women with pre-eclampsia who are at lowest and 
greatest risk of severe adverse maternal outcomes within 2 days of assessment, and can support provision of accurate 
guidance to women, their families, and their maternity care providers.

Funding University of Strathclyde Diversity in Data Linkage Centre for Doctoral Training, the Fetal Medicine 
Foundation, The Canadian Institutes of Health Research, and the Bill & Melinda Gates Foundation.

Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction
Complicating 2–4% of pregnancies, pre-eclampsia 
(defined as new-onset hypertension at or after 20 weeks’ 
gestation, accompanied by either new-onset proteinuria, 
other maternal target organ damage, or evidence of 
uteroplacental dysfunction)1,2 remains a leading global 
cause of maternal mortality and life-threatening 
morbidity.1–5 More than 99% of the annual 46 000 pre-
eclampsia-related maternal deaths occur in low-income 
and middle-income countries (LMICs).6

In pregnancies complicated by pre-eclampsia, it is clear 
that perinatal survival without major morbidity is largely 
related to gestational age at birth.7 However, the burden 

of adverse maternal outcomes is spread across gestation. 
Although maternal risks are proportionately greater with 
the earlier onset of pre-eclampsia,5,8,9 the population level 
burden of maternal risk is borne by the 75–80% of cases 
of pre-eclampsia that arise at term.10 

The sole method of initiating recovery from pre-
eclampsia is delivery of the placenta.2 At term, the focus 
is initiating birth.11 Before term, women and their 
maternity care providers balance maternal risks from 
evolving disease with prematurity-related perinatal risks 
by subjectively integrating ongoing assessments of 
symptoms, signs, and laboratory tests.2 In busy 
maternity units, considerable experience informs 
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decisions; however, most women with preterm pre-
eclampsia are managed, at least initially, by relatively 
inexperienced maternity care providers. For many 
LMICs and disadvantaged high-income country 
populations, access to comprehensive obstetric and 
newborn care is limited. 

To optimise maternal outcomes in pre-eclampsia, we 
need objective, time-of-disease maternal risk assessment 
to inform decision making during the following 48 h, 
wherever that woman lives. We previously used logistic 
regression to develop a model—fullPIERS (pre-eclampsia 
integrated estimate of risk)—for high-income countries.8 
In this study, we aimed to harness the strengths of 
machine learning-based classifiers to test the hypothesis 
that it is possible to develop and externally validate a novel 
globally-relevant PIERS-ML model using information 
routinely-available at presentation with pre-eclampsia. 

Methods
Study design and included datasets
For this machine leaning model (PIERS-ML), we used 
prospectively collected data from women with pre-
eclampsia, broadly-defined according to the 2021 
International Society for the Study of Hypertension in 
Pregnancy criteria,1 as “women presented for initial 

facility-based assessment at centres with general policies 
of expectant management of pre-eclampsia remote from 
term”.

To maximise the sample size for machine learning, 
data were collated from published model development 
and validation studies for the miniPIERS model 
(2008–12; N=2126 from Brazil, Fiji, Pakistan, South 
Africa, and Uganda)5 and development and validation for 
the fullPIERS model (2003–16; N=6717 from Australia, 
Canada, Finland, New Zealand, UK, and USA).8,12 A 
randomly assigned 75·0% (6633 of 8843 women) of the 
combined cohort was used for model development, 
12·5% (1107 women) were used to select thresholds for 
risk strata, and 12·5% (1103 women) were reserved for 
model validation, which was completely unseen by the 
model during training. This individual participant data 
meta-analysis was prospectively registered with 
PROSPERO (CRD42020195616).

The model was externally validated on the second 
dataset from a prospective observational cohort study 
using the electronic health records of 2901 women with 
singleton pregnancies who were admitted with a 
diagnosis of pre-eclampsia (using the definition from 
the International Society for the Study of Hypertension 
in Pregnancy1) to King’s College Hospital, London, UK, 

Research in context 

Evidence before this study 
Pre-eclampsia is associated with increased risks of maternal 
morbidity and mortality. A systematic review published in 
January, 2018, summarised previous studies presenting predictive 
models of adverse outcomes of pre-eclampsia. These studies 
included univariable models and multivariable models using 
logistic or Cox regression. Of the reviewed models, the fullPIERS 
logistic regression model was identified as having the best 
performance. On Jan 19, 2024, we searched PubMed using the 
search terms (“outcome”) and (“preeclampsia” or “pre-eclampsia”), 
and (“model” or “risk” or “algorithm”) in the title published since 
the 2018 review paper (from Jan 1, 2018, to Jan 19, 2024) and 
found a further seven studies presenting models of adverse 
maternal outcomes of pre-eclampsia from single country studies 
in Zimbabwe, Germany, and China. Participant numbers ranged 
from 319 to 2532, and the studies each collected data from one or 
two institutions. All except one of the models predicted a 
combined maternal and neonatal outcome. Of the seven studies, 
four studies created logistic regression models, one study created 
a machine learning model, and two studies created both logistic 
regression and machine learning models. Of the machine learning 
models, two models were created based on low-income or 
middle-income country data. A single high-income country 
institution, artificial intelligence-based model has been developed 
that predicts a combined adverse maternal and perinatal 
outcome. No model was reported to have better performance 
than the fullPIERS model, and only one model was externally 
validated, with poor performance.

Added value of this study 
We recruited 8843 women from 53 maternity units in 
11 low-income, middle-income countries, and high-income 
countries to develop and validate the PIERS-ML model using a 
random forest method, and 2901 women to externally validate 
the model. Maternal risk strata were defined by diagnostic test 
performance criteria (likelihood ratios) for variables collected 
within 24 h of admission with pregnancy hypertension in 
predicting the occurrence of any element of a combined 
adverse maternal outcome within 48 h, with useful 
performance at 7 days and any time after admission. In 
addition, the PIERS-ML model identified women at very low risk 
of experiencing eclampsia and stillbirth. This performance was 
repeated in the external validation cohort as expected.

Implications of all the available evidence 
The PIERS-ML model, to our knowledge, quantifies maternal 
risks in women with pre-eclampsia and provides useful risk 
stratification to guide joint decision making between clinicians 
and patients about place of care (eg, in utero transfer to higher 
levels of care), co-interventions (eg, antenatal corticosteroids 
and magnesium sulphate), and timing of birth (eg, labour 
induction and caesarean birth). A dynamic modelling extension 
of PIERS-ML would facilitate ongoing care beyond initial 
assessment. New variables (eg, angiogenic markers) should be 
tested to determine their possible inclusion in future versions of 
the model.
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and Medway Maritime Hospital, Gillingham, UK, 
between Dec 1, 2013, and Dec 31, 2021. All women 
whose data were used in the external validation dataset 
gave written informed consent to participate in the 

study, which was conducted according to the guidelines 
of the Declaration of Helsinki and approved by the 
NHS Research Ethics Committee (REC reference: 
02-03-033). 

PIERS-ML group External validation group

Women with an adverse 
outcome at any time after 
first assessment (N=1083)

Women without an 
adverse outcome 
(N=7760)

p value* Women with an adverse 
outcome at any time after 
first assessment (N=121)

Women without an 
adverse outcome 
(N=2780)

p value*

Health system

National per capita gross domestic product (US$) 41 064 
(7501–46 594)

43 586 
(28 206–50 114)

<0·0001 42 330
(41 064–43 043)

42 330 
(40 361–43 043)

0·0427

National maternal mortality ratio (maternal deaths per 
100 000 live births)

11 (10–161) 11 (11–15) 0·0693 8 (7·5–8·0) 8 (7·0–8) 0·13

Demographics

Race ·· ·· 0·0259 Not collected Not collected ··

White 379 (34·8%) 2485 (31·8%) ·· ·· ·· ··

Asian 323 (29·7%) 2365 (30·2%) ·· ·· ·· ··

Black 303 (27·8%) 2001 (25·6%) ·· ·· ·· ··

Other 119 (10·9%) 909 (11·6%) ·· ·· ·· ··

Maternal age at expected date of delivery (years) 31 (26–35) 31 (27–36) 0·0377 29 (26–34) 31 (27–35) 0·20

Nulliparous 653 (60·0%) 4542 (58·1%) 0·25 ·· Not collected ··

Multiple pregnancy 128 (11·8%) 529 (6·8%) <0·0001 Not collected Not collected ··

Gestational age at eligibility (weeks) 33·4 (30·0–37·1) 36·0 (32·0–38·4) <0·0001 35·6 (31·4–38·9) 37·9 (35·6–39·7) <0·0001

Past and current medical and obstetrical history

Cigarette smoking 139 (12·8%) 1011 (12·9%) 0·9232 Not collected Not collected ··

Chronic hypertension 146 (13·4%) 1324 (16·9) 0·003 Not collected Not collected ··

Pre-gestational renal disease 63 (5·8%) 520 (6·6%) 0·30 Not collected Not collected ··

Pre-gestational diabetes 61 (5·6%) 409 (5·2%) 0·61 Not collected Not collected ··

Gestational diabetes 75 (6·9%) 974 (12·5%) <0·0001 Not collected Not collected ··

Symptoms on day of first assessment 

Nausea or vomiting 107 (9·8%) 443 (5·7%) <0·0001 20 (16·5%) 175 (6·3%) <0·0001

Headache or visual disturbance 406 (37·3%) 2132 (27·3%) <0·0001 54 (44·6%) 760 (27·4%) <0·0001

Right upper quadrant or epigastric pain 205 (18·8%) 754 (9·6%) <0·0001 27 (22·3%) 138 (5·0%) <0·0001

Chest pain or dyspnoea 73 (6·7%) 117 (1·5%) <0·0001 17 (14·1%) 29 (1·0%) <0·0001

Signs on day of first assessment

Height (cm) 162 (157–166) 163 (157–168) 0·24 164 (160–168) 165 (161–169·6) 0·0689

Weight (kg) 78·0 (68·5–87·0) 81·0 (70·3–93·4) <0·0001 77·0 (67·5–88) 85·9 (75–100) <0·0001

Systolic blood pressure (mm Hg) 156 (147–166) 151 (140–161) <0·0001 150 (143–164) 148 (142–156) 0·0071

Diastolic blood pressure (mm Hg) 99 (91–105) 96 (90–100) <0·0001 94 (90–100) 94 (90–99) 0·53

Oxygen saturation less than 93% 43 (3·9%) 28 (0·4%) <0·0001 Not collected Not collected NA

Dipstick proteinuria (number of pluses) 2 (1–3) 1 (1–2) <0·0001 1 (1–1) 1 (0–1) <0·0001

Laboratory tests—worst values on day of first assessment

Haematocrit (%) 0·36 (0·34–0·38) 0·36 (0·34–0·38) 0·0019 0·35 (0·32–0·38) 0·36 (0·33–0·38) 0·0683

Total leucocyte count (×109 per L) 10·9 (9·5–12·3) 10·6 (9·3–12·0) <0·0002 9·66 (7·62–13·57) 9·9 (8·2–12) 0·73

Platelet count (×109 per L) 198 (157–235) 212 (175–245) <0·0001 189 (126–237) 219 (182–265) <0·0001

Mean platelet volume (fL) 9·6 (8·9–10·8) 10·0 (9·1–11·2) <0·0001 9·5 (8·7–10·7) 9·8 (8·9–10·9) 0·28

Fibrinogen (g/L) 27·1 (25·1–29·3) 26·2 (24·6–27·9) <0·0001 6·2 (5·4–7·4) 6·5 (5·7–7·2) 0·19

Activated partial thromboplastin time (seconds) 27·5 (25·5–30·0) 26·6 (24·8–28·2) <0·0001 26·2 (24·37–28·85) 26·4 (24·35–27·8) 0·69

Serum creatinine (μmol/L) 64 (54–75) 60 (52–70) <0·0001 61 (50–74·5) 54 (47–63) <0·0001

Uric acid (mmol/L) 365 (321–418) 339 (297–385) <0·0001 350 (297–435) 339·5 (281·25–396) 0·0758

Aspartate transaminase (U/L) 39 (29–65) 29 (22–41) <0·0001 28 (22·5–49·5) 23 (18–31) <0·0001

Alanine transaminase (U/L) 32 (20–55) 23 (14–35) <0·0001 17 (11–33·25) 14 (10–20) 0·0183

Albumin (g/L) 27 (18–30) 29 (23–32) <0·0001 34 (31–36) 35 (33–37) <0·0001

(Table 1 continues on next page)
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Study variables
Variables were considered for modelling only if assessed 
before the occurrence of any component of the combined 
adverse maternal outcome. Variables detailed the woman’s 
health system, her demographics, past and current 
medical and obstetric history, and relevant symptoms, 
signs, and laboratory tests. For face validity, at least one 
objective variable was required for each cardiorespiratory, 
renal, hepatic, and haematological organ system.

Outcomes
The primary study outcome was a composite developed 
by the Delphi consensus13 and defined as the first 
occurrence of one or more maternal mortality or severe 
maternal morbidity (appendix pp 5–6), within 2 days of 
first assessment for pre-eclampsia. 

Missing variables and machine learning 
The most clinically relevant abnormal value of each 
variable obtained during assessment on the first day of 
admission was taken to create a dataset, with only one 
observation per woman per day. The most clinically 
relevant abnormal value was defined as a positive 
response for any of the symptom variables, the 
minimum value for oxygen saturation, platelet count, 
fibrinogen, serum albumin, and random glucose, and 
the maximum value for all other repeated variables (data 
missingness is detailed in the appendix pp 8–9). 
Variables were excluded if at least 60% of values were 
missing.14,15 Variables with a lower proportion of missing 
values were included in multiple imputation if values 
were missing at random (ie, the value of other variables 
could explain why something was missing), or 
completely at random (ie, has no explanation). As 18·6% 
of all data were missing (64 262 missing values of 
344 877 values), development and validation datasets 
were imputed 20 times each (number of imputations 
equal to our greater than percentage of incomplete 

cases), using chained random forests (appendix p 18). 
Models were fitted on each development dataset (random 
75% of the data) using ten-fold cross-validation. Multiple 
machine learning methods along with feature selection 
from the initial 33 variables were tested and compared 
(appendix pp 13–14) with random forest performing best 
(random forest methodology is explained in the appendix 
pp 18–19). Models were tested on each imputed 
validation dataset (12·5% [1103 of 8843 women] of the 
data), and predictions were combined into a mean 
prediction per woman. The 18-variable random forest 
model, where, for parsimony, had variables with above 
average importance using the Gini index, was chosen as 
the final model. 

Model testing and validation
We assessed the model’s ability to classify women into 
outcome and no outcome groups, using the remaining 
12·5% (1103 of 8843 women) of the data, using the area-
under-the-receiver-operator characteristic (AUROC), 
calibration, and precision-recall curves. Decision curve 
analysis was also carried out to assess clinical utility (see 
appendix p 24 for details of model calibration, decision 
curve analysis, and precision-recall curve). Likelihood 
ratios used to determine risk strata were data-defined as 
follows: very low risk (by a negative likelihood ratio 
<0·10), low risk (negative likelihood ratio of 0·1–0·2), 
high risk (positive likelihood ratio of 5·0–10·0), very high 
risk (positive likelihood ratio >10·0), and moderate risk 
otherwise (appendix pp 19–20).16 Positive likelihood ratios 
for very high and high risk were calculated by splitting 
the testing data into a very high risk and not very high 
risk group, and high risk and less than high risk group, 
and then calculating likelihood ratios for a two-group 
prediction using sensitivity and specificity.17 Similarly, 
negative likelihood ratios for very low risk and low risk 
were calculated by creating very low risk and not very low 
risk group, and low risk and higher than low risk group.17 

PIERS-ML group External validation group

Women with an adverse 
outcome at any time after 
first assessment (N=1083)

Women without an 
adverse outcome 
(N=7760)

p value* Women with an adverse 
outcome at any time after 
first assessment (N=121)

Women without an 
adverse outcome 
(N=2780)

p value*

(Continued from previous page)

Interventions

Corticosteroid received 377 (34·8%) 1695 (21·8%) <0·0001 Not collected Not collected ··

Antihypertensive medication received 714 (65·9%) 4097 (52·7%) <0·0001 53 (43·8%) 849 (30·6%) 0·0025

Magnesium sulphate received 556 (51·3%) 2257 (29·0%) <0·0001 4 (3·3%) 15 (0·5%) 0·0069

Pregnancy outcomes

Gestational age at delivery (weeks) 35·0 (31·5–37·6) 37·0 (34·1–38·7) <0·0001 36·4 (32·9–39·4) 39 (37·3–40·1) <0·0001

Birthweight (g) 1900 (965–2750) 2560 (1556–3200) <0·0001 Not collected Not collected ··

Intrauterine fetal death, ≥22+0 weeks or ≥500 grams22 65 (6·0%) 163 (2·1%) <0·0001 6 (4·96%) 18 (0·65%) <0·0003

Neonatal death within 28 days 40 (3·7%) 102 (1·3%) <0·0001 2 (1·65%) 1 (0·04%) 0·0050

Data are n (%) or median (IQR). Race has been defined in the appendix (pp 4–5). NA=not applicable. *χ², Fisher’s exact, or Mann-Whitney U test.

Table 1: Baseline characteristics, co-interventions, and pregnancy outcomes of the study cohort
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Thereafter, we assessed the stratification accuracy of 
the PIERS-ML model in the external validation cohort. 
Following the selection of the variables in the PIERS-ML 
model, the external validation dataset had 18·6% 
(64 262 missing values of 344 877 values) missingness. 
These missing values were imputed 20 times, 
independently of the existing combined PIERS-ML 
dataset. The PIERS-ML model was applied to each of the 
20 imputed datasets and the mean prediction per woman 
was taken. Oxygen saturation was not collected from 
women in the external validation cohort, so it was 
assumed to be normal and replaced uniformly by 97%, 
which was the expected normal measurement. Data for 
some less common components of the combined adverse 
maternal outcome were not available in women’s 

electronic health records, and some other components 
were conflated into summary measures.

Sensitivity analyses
For the sensitivity analyses, new datasets were created in 
which additional coagulation-related variables were 
included (as they are costly in all health systems), and 
mean platelet volume was excluded (as it is not routinely 
reported by all haematology laboratories). Modelling 
steps were repeated for these datasets and the results 
were compared.

Secondary analyses were undertaken to predict the 
following: (1) outcomes at either 7 days or at any time 
following admission until primary hospital discharge 
(outcomes within 7 days included patients who had 

PIERS-ML group (N=8843) External validation group (N=2901)

Within 2 days of 
first assessment 
(n=814 outcomes 
of 590 women)

Within 7 days of 
assessment 
(n=1156 outcomes 
of 813 women)

At any time before 
primary discharge 
(n=1530 outcomes 
of 1083 women)

Within 2 days of 
first assessment 
(n=96 outcomes of 
83 women)

Within 7 days  of 
assessment 
(n=115 outcomes of 
99 women)

At any time  
before primary 
discharge (N=121)

Maternal death 0 1 (0·1%) 2 (0·1%) 1 (1%) 1 (0·9%) 1 (0·7%)

Central nervous system

Eclamptic seizures 49 (6%) 63 (5·4%) 75 (4·9%) 22 (22·9%) 22 (19·1%) 25 (17·7%)

Glasgow coma score <13 14 (1·7%) 15 (1·3%) 20 (1·3%) ·· ·· ··

Stroke or reversible ischaemic neurological deficit 4 (0·5%) 5 (0·4%) 6 (0·4%) 0 0 0

Transient ischaemic attack 0 1 (0·1%) 1 (0·1%) ·· ·· ··

Cortical blindness 3 (0·4%) 5 (0·4%) 6 (0·4%) 1 (1%) 1 (0·9%) 1 (0·7%)

Posterior reversible encephalopathy 4 (0·5%) 5 (0·4%) 5 (0·3%)

Cardiorespiratory

Positive inotropic support required 4 (0·5%) 5 (0·4%) 8 (0·5%) ·· ·· ··

Infusion of a third injectable antihypertensive 17 (2·1%) 28 (2·4%) 33 (2·2%) ·· ·· ··

Myocardial ischaemia or infarction 4 (0·5%) 5 (0·4%) 6 (0·4%) 2 (2·1%) 2 (1·7%) 2 (1·4%)

Oxygen saturation less than 90% 53 (6·5%) 85 (7·4%) 114 (7·5%) 2 (2·1%)* 2 (1·7%)* 3 (2·1%)*

At least 50% fractional inspired oxygen for at least 1 h 29 (3·6%) 50 (4·3%) 72 (4·7%) 2 (2·1%)* 2 (1·7%)* 3 (2·1%)*

Intubation other than for caesarean birth 23 (2·8%) 34 (2·9%) 47 (3·1%) 2 (2·1%)* 2 (1·7%)* 3 (2·1%)*

Pulmonary oedema 55 (6·8%) 82 (7·1%) 96 (6·3%) 2 (2·1%) 3 (2·6%) 3 (2·1%)

Haematological

Blood transfusion 243 (29·9%) 348 (30·1%) 460 (30·1%) 29 (30·2%) 36 (31·3%) 53 (37·6%)

Platelet count <50 × 109 per L, without transfusion 85 (10·4%) 104 (9%) 112 (7·3%) 5 (5·2%) 8 (7%) 9 (6·4%)

Hepatic

Dysfunction 23 (2·8%) 30 (2·6%) 44 (2·9%) 5 (5·2%) 5 (4·3%) 5 (3·5%)

Haematoma or rupture 0 0 0 2 (2·1%) 2 (1·7%) 2 (1·4%)

Renal

Acute renal insufficiency in women without chronic 
kidney disease

3 (0·4%) 5 (0·4%) 9 (0·6%) 8 (8·3%)† 8 (7%)† 8 (5·7%)†

Acute renal failure in women with chronic kidney disease 36 (4·4%) 45 (3·9%) 52 (3·4%) 8 (8·3%)† 8 (7%)† 8 (5·7%)†

Dialysis 2 (0·2%) 7 (0·6%) 11 (0·7%) 0 0 0 

Other

Placental abruption 75 (9·2%) 98 (8·5%) 129 (8·4%) 17 (17·7%) 25 (21·7%) 29 (20·6%)

Severe ascites 30 (3·7%) 50 (4·3%) 65 (4·2%) 0 0 0 

Bell’s palsy 3 (0·4%) 3 (0·3%) 6 (0·4%) 0 0 0 

*Respiratory failure (pulmonary oedema accompanied by severe hypoxaemia with need for intubation or mechanical ventilation). †Acute kidney injury (serum creatinine >2 mg/dL [>176·8 mM]). All other 
outcomes have been defined in the appendix (pp 4–5). 

Table 2: Occurrence of adverse maternal outcomes following first assessment, by mortality or morbidity event
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outcomes within 2 days, and outcomes at any time 
included outcomes within 2 days and 7 days); and 
(2) outcomes limited to eclampsia or stillbirth.

As some renal and haematological measures were 
included in both the candidate variables and the definitions 
of components of the combined maternal outcomes, we 
assessed the performance of the model in women who 
experienced no renal, no haematological, or neither renal 
nor haematological outcomes. The influence of multiple 
imputation on predictions was assessed by complete case 
analysis and mean imputation (appendix p 25).

Comparison with the fullPIERS model
To compare the performance of the PIERS-ML model 
with the fullPIERS model, predicted probabilities were 
calculated for the validation dataset using the fullPIERS 
logistic regression model,8 and AUROC, calibration, and 
stratification were compared with PIERS-ML. As the 
fullPIERS model must be adjusted for use in a new 
setting,18 the model was refitted on the combined, imputed 

development dataset by fitting a logistic regression model 
using the same variables and interactions as the fullPIERS 
model on each of the imputed datasets using ten-fold 
cross-validation. The same performance assessment was 
repeated for the refitted model as for the original.

Statistical analysis
All analyses were performed using R Studio (version 
2022.02.2+492) and multiple imputation was carried out 
using missRanger (version 2.2.1). Random forests were 
fitted on each dataset using the caret package (version 
6.0-94) with ten-fold cross-validation using the “rf” 
method, and combined into one ensemble model using 
the caretEnsemble (version 2.0.2) package. To compare 
cohort characteristics, χ² and Fisher’s exact tests were 
used for categorical variables, and Mann-Whitney U tests 
were used to were used for continuous variables, with 
statistical significance set at p<0·05.

Role of the funding source
The funders of the study had no role in the study design, 
data collection, data analysis, data interpretation, or 
writing of the report. 

Results
Data were available for 8843 eligible women with pre-
eclampsia, who were recruited from 53 institutions 
(appendix pp 2–4) in 11 countries (Australia, Brazil, 
Canada, Fiji, Finland, New Zealand, Pakistan, South 
Africa, Uganda, UK,  and USA), with a median of 1244 
(IQR 693·5–1983·5) women per included cohort.5,8,12,19–21 
Other cohort details have been published previously.5,8,12 
For external validation from two new institutions, data 
were available from an additional 2901 women, and 
collected as part of a prospective observational study.

Health system and individual-level characteristics of 
women who experienced an adverse maternal outcome 
differed from women who did not (table 1; appendix 
pp 6–7). Women who experienced adverse outcomes 
were more often cared for in countries with lower per 
capita gross domestic products. These women were 
younger, more likely to have multiple pregnancies, and 
presented at an earlier gestational age; less often, their 
past history was complicated by chronic hypertension 
and their pregnancies by gestational diabetes. The study 
population had similar proportions of women from 
White, Asian, or Black ethnic backgrounds, regardless of 
complications. 

At presentation with pre-eclampsia, women who sub
sequently developed an adverse maternal outcome (vs 
those who did not) differed in their symptom profile, 
signs, and laboratory results, although results largely 
overlapped (table 1). Compared with women who did not 
experience outcomes, women who did experience 
outcomes were more often symptomatic, had lower 
weight, higher blood pressure, lower oxygen saturation, 
higher dipstick proteinuria, and more perturbed 

Figure 1: Shapley values for the PIERS-ML variables in a single random forest on the corresponding 
development dataset
Shapley values represent the feature value’s contribution to the individual’s predicted probability. Positive Shapley 
values increase the predicted probability, negative values decrease the predicted probability, and values of zero 
show no change to the predicted probability. EDD=expected date of delivery. GDP=gross domestic product. 
SpO2=oxygen saturation by pulse oximetry. 
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laboratory results; differences in laboratory results were 
not changed significantly by imputation. Women who 
subsequently developed an adverse outcome more often 
received antenatal corticosteroids, antihypertensives, and 
magnesium sulphate. Compared with the babies of 
women who did not experience outcomes, babies of 
women who did were born earlier and of lower 
birthweight, and more often died. 

Table 2 shows that 590 (6·7%) of 8843 women had an 
adverse maternal outcome within 2 days of first 
assessment, 813 (9·2%) within 7 days of assessment, and 
1083 (12·2%) at any time before primary discharge. Most 
adverse outcomes were cardiorespiratory, haematological, 
hepatic, or placental. There were two maternal deaths, 
neither within 48 h of first assessment. In the external 
validation group, 83 (2·9%) of 2901 women had an 
adverse maternal outcome within 2 days, 99 (3·4%) 
within 7 days, and 121 (4·2%) at any time before primary 
discharge. Most adverse outcomes were central nervous 
system, haematological, or placental.

Data from a random selection of 6633 women were 
used for model development. The following variables 
were excluded due to at least 60% missingness: total 
bilirubin, urinary protein to creatinine ratio, international 
normalised ratio, and lactate dehydrogenase (appendix 
pp 8–9). The remaining variables either contained no 
missingness or fewer than 60% missing at random or 
missing completely at random observations. 

Figure 1 contains a plot of the Shapley values for a 
single random forest on its corresponding validation 
dataset. Although most Shapley values for all variables 
were close to zero, high values of serum creatinine, 
national maternal mortality ratio, aspartate and alanine 
transaminases, and low values of platelet count, oxygen 
saturation, national per capita GDP, and haematocrit had 
high Shapley values, meaning an increased predicted 
probability (appendix pp 21–22). Figure 2 shows the 
relative importance of the 18 PIERS-ML model variables. 
Platelet count was of greatest importance and national 
MMR was of least importance. All target organ systems 
were included, with the following numbers of covariates: 
cardiorespiratory (N=3), renal (N=3), hepatic (N=2), and 
haematological (N=4). In addition, there were variables 
representing health systems (N=2), demographic 
characteristics (N=2), and anthropometry (N=2). 

From the remaining 2210 (24·9%) of 8843 women, 
1107 women informed selection of cutoff points for the 
risk strata according to likelihood ratios, and the 
remaining 1103 women informed PIERS-ML model 
validation according to the selected cutoff points. 
Calibration was assessed on all 2210 women in the 
internal validation group; although the linear calibration 
curve appeared to be close to an intercept of 0 and slope 
of 1, the Spiegelhalter p value of 0·0026 showed the 
model to not be optimally calibrated (figure 3). As 
calibration did not improve upon recalibration (appendix 
pp 22–23), we chose to prioritise stratification into risk 
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Figure 2: PIERS-ML variables ranked by importance within the random forest model based on Gini index, 
compared with the least important variable (National MMR)
Random Forests enable examination of feature importances, which is the mean of the amount the Gini Index (or 
node impurity) decreases by in each tree at the split that uses the feature. The more the Gini Index decreases for a 
feature, the more important it is. This figure rates the features from 0–100, with 100 being the most important. 
EDD=expected date of delivery. GDP=gross domestic product. SpO2=oxygen saturation by pulse oximetry.

Figure 3: Calibration plot for the PIERS-ML model
Predictions on the validation and testing datasets, in increasing order, were 
binned together into ten groups of 221 predictions. Event rates (observed risk) 
were calculated along with confidence intervals and plotted against the mean 
predicted probability per group to create the dot and whisker plot. Smooth lines 
were plotted using the individual predicted probabilities and yes and no 
outcomes, with Linear (red) and Loess (blue) methods. Cox calibration intercept 
and slope, Brier score, and Spiegelhalter Z scores were calculated. 
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PIERS-ML output (for 
outcomes within 2 days)

Hypertensive pregnant 
women in stratum 

Hypertensive pregnant 
women with an outcome 
within 2 days 

Hypertensive pregnant women 
within risk stratum with an 
outcome within 7 days 

Hypertensive pregnant 
women within risk stratum 
with an outcome at any time

Primary combined adverse maternal outcome (AUROC 0·80 [0·76–0·84], AUPRC 0·38)

Very low risk ≤0·5% 8 (0·7%) 0 1 (12·5%) 1 (12·5%)

Low risk 0·6–3·0% 321 (29·1%) 7 (2·2%) 13 (4·0%) 21 (6·5%)

Moderate risk 3·1–18·6% 676 (61·3%) 36 (5·3%) 58 (8·6%) 76 (11·2%)

High risk 18·7–45·5% 87 (7·9%) 23 (26·4%) 25 (28·7%) 28 (32·2%)

Very high risk ≥45·6% 11 (1·0%) 10 (90·9%) 10 (90·9%) 10 (90·9%)

Excluding mean platelet volume (AUROC 0·80 [0·76–0·84], AUPRC 0·39)

Very low risk ≤0·5% 8 (0·7%) 0 1 (12·5%) 1 (12·5%)

Low risk 0·6–3·0% 340 (30·8%) 8 (2·4%) 14 (4·1%) 22 (6·5%)

Moderate risk 3·1–18·6% 656 (59·5%) 35 (5·3%) 56 (8·5%) 74 (11·3%)

High risk 18·7–45·5% 86 (7·8%) 22 (25·6%) 25 (29·1%) 28 (32·6%)

Very high risk ≥45·6% 13 (1·2%) 11 (84·6%) 11 (84·6%) 11 (84·6%)

Including fibrinogen and activated prothrombin time (AUROC 0·80 [0·76–0·84], AUPRC 0·38)

Very low risk ≤0·5% 7 (0·6%) 0 1 (14·3%) 1 (14·3%)

Low risk 0·6–3·0% 291 (26·4%) 6 (2·1%) 12 (4·1%) 20 (6·9%)

Moderate risk 3·1–18·6% 709 (64·3%) 39 (5·5%) 61 (8·6%) 79 (11·1%)

High risk 18·7–45·5% 82 (7·4%) 19 (23·2%) 21 (25·6%) 24 (29·3%)

Very high risk ≥45·6% 14 (1·3%) 12 (85·7%) 12 (85·7%) 12 (85·7%)

fullPIERS (AUROC 0·62 [0·56–0·68], AUPRC 0·33)

Very low risk ≤1·3% 6 (0·5) 2 (33·3%) 2 (33·3%) 2 (33·3%)

Low risk NA NA NA NA NA

Moderate risk 1·4–30·4% 1011 (91·5%) 51 (5·0%) 78 (7·7%) 105 (10·74)

High risk 30·5–70·6% 62 (5·6%) 11 (17·7%) 14 (22·6%) 14 (22·6%)

Very high risk ≥70·7% 26 (2·4%) 12 (46·2%) 13 (46·2%) 15 (57·7%)

fullPIERS using PIERS-ML thresholds (AUROC 0·62 [0·56–0·68], AUPRC 0·33)

Very low risk ≤0·5% 3 (0·3%) 0 0 0 

Low risk 0·6–3·0% 31 (2·8%) 4 (12·9%) 5 (16·1%) 5 (16·1%)

Moderate risk 3·1–18·6% 868 (79·0%) 42 (4·8%) 66 (7·6%) 89 (10·3%)

High risk 18·7–45·5% 146 (13·3%) 12 (8·2%) 16 (11·0%) 19 (13·0%)

Very high risk ≥45·6% 51 (4·6%) 18 (35·3%) 20 (39·2%) 22 (43·1%)

fullPIERS refitted on combined dataset (AUROC 0·67 [0·62–0·72], AUPRC 0·25)

Very low risk ≤1·0% 1 (0·1%) 0 0 0 

Low risk NA NA NA NA NA

Moderate risk 1·1–15·5% 1031 (93·3%) 60 (5·8%) 87 (8·4%) 115 (11·2%)

High risk 15·6–44·2% 64 (5·8%) 11 (17·2%) 15 (23·4%) 16 (25·0%)

Very high risk ≥44·3% 9 (0·8%) 5 (55·6%) 5 (55·6%) 5 (55·6%)

fullPIERS refitted on combined dataset using PIERS-ML thresholds (AUROC 0·67 [0·62–0·72], AUPRC 0·25)

Very low risk ≤0·5% 0 NA NA NA

Low risk 0·6–3·0% 108 (9·8%) 5 (4·6%) 6 (5·6%) 13 (12·0%)

Moderate risk 3·1–18·6% 943 (85·8%) 57 (6·0%) 85 (9·0%) 105 (11·1%)

High risk 18·7–45·5% 40 (3·6%) 9 (22·5%) 11 (27·5%) 12 (30·0%)

Very high risk ≥45·6% 8 (0·7%) 5 (62·5%) 5 (62·5%) 5 (62·5%)

External validation cohort (AUROC 0·76 [0·71–0·82], AUPRC 0·17)

Very low risk ≤0·5% 9 (0·3%) 0 0 0 

Low risk 0·6–3·0% 1512 (52·1%) 17 (1·1) 22 (1·5) 34 (2·2)

Moderate risk 3·1–18·6% 1324 (45·7%) 47 (3·5) 55 (4·2) 65 (4·9)

High risk 18·7–45·5% 52 (1·8%) 17 (32·7) 20 (38·5) 20 (38·5)

Very high risk ≥45·6% 3 (0·1%) 2 (66·7) 2 (66·7) 2 (66·7)

Data are n (%). Risk strata determined by diagnostic test performances for first occurrence of any component of the primary combined adverse maternal outcome within 2 days: very low risk –LR <0·1; low risk –LR 
0·1 to 0·2; moderate risk +LR <5·0 and –LR >0·2; high risk +LR 5·0 to 10·0; very high risk +LR >10·0. AUROC=area under the receiver-operator characteristic. AUPRC=area under the precision-recall curve. NA=could 
not select a probability threshold greater than the very low risk threshold that produced a negative likelihood ratio less than or equal to 0·2, when using predicted probabilities from the fullPIERS model.

Table 3: Diagnostic test performance of PIERS-ML risk strata 
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classification groups to inform clinical decision making. 
The PIERS-ML model accurately stratified risk for 
adverse maternal outcomes within 2 days (table 3), with 
an AUROC of 0·80 (95% CI 0·76–0·84 vs the currently 
used logistic regression model, fullPIERS: AUROC 0·68 
[95% CI 0·63–0·74]; figure 4). The precision-recall curve 
of the PIERS-ML model on the validation data was very 
close to a straight line, meaning that there is no single 
probability threshold with both good precision and good 
recall; therefore, using a single cutoff point to classify 
patients into an outcome group and a no outcome group 
would be inaccurate (figure 5).

Of the 1103 women in the internal validation group, 
329 (29·8%) women were classified as being at very low 
risk (eight [0·7%] women) or low risk (321 [29·1%] 
women) during the 2 days (table 3). Among women at 
very low risk, adverse maternal outcomes were very 
infrequent: zero within 2 days, and one (12·5%) of eight 
women each within 7 days or at any time. Among women 
at low risk, adverse maternal outcomes were also 
infrequent: seven (2·2%) of 321 women within 2 days, 
13 (4·0%) women within 7 days, and 21 (6·5%) women at 
any time. The PIERS-ML model correctly classified 
women at very low and low risk of adverse outcomes 
within 2 days, but not within 7 days or at any time. 

98 (8·9%) of 1103 women were classified as being at 
high (87 [7·9%] women) or very high risk (11 [1·0%] 
women) of an adverse maternal outcome within 2 days 
(table 3). Among women at high risk, adverse maternal 
outcomes were frequent: 23 (26·4%) of 87 women within 
2 days, 25 (28·7%) women within 7 days, and 28 (32·2%) 
women at any time. Among women at very high risk, 
adverse maternal outcomes were very frequent, with all 

ten (90·9%) of 11 women’s outcomes occuring within 
2 days. The PIERS-ML model correctly classified women 
at high and very high risk of adverse outcomes within 2 days, 
7 days, or at any time.

Among 676 (61·3%) of 1103 women classified as being 
at moderate risk, adverse maternal outcomes occurred in 
36 (5·3%) women within 2 days, 58 (8·6%) women 
within 7 days, and 76 (11·2%) women at any time, all 
within the anticipated range of outcomes based on 
uninformative likelihood ratios (table 3). 

The event rate in the external validation group was 2·9% 
(83 of 2901 women) in 2 days, 3·4% (99 women) in 7 days, 
and 4·2% (121 women) at any point, compared with 6·7% 
in 2 days, 9·2% in 7 days, and 12·2% at any point in the 
combined dataset. From the 2901 women in the external 
validation cohort, nine (0·3%) women were classified as 
being at very low risk, 1512 (52·1%) women were classified 
as being at low risk, 1324 (45·7%) women were classified 
as being at moderate risk, 52 (1·8%) women were 
classified as being at high risk, and three (0·1%) women 
were classified as being at very high risk. The PIERS-ML 
model accurately stratified risk for adverse maternal 
outcomes within 2 days with women assigned to each 
stratum experiencing an outcome rate within the predicted 
range, and an AUROC of 0·76 (95% CI 0·71–0·82; table 3). 
Although the event rates were lower in the external 
validation set than the development data, the model still 
correctly classified women at very low risk and low risk, as 
well as those at high risk and very high risk. 

Excluding mean platelet volume from the set of 
variables significantly altered the PIERS-ML model’s 
performance, resulting in 59·5% (656 of 1103 women) in 
the moderate risk stratum, and loss of reassurance for 
the very low risk and low risk strata beyond 2 days 
(table 3), although the AUROC remained unchanged 
(0·80 [0·76–0·84]). Including fibrinogen and activated 

Figure 4: PIERS-ML area under receiver-operator characteristic for adverse 
maternal outcomes within 2 days of initial assessment using data within 
1 day of initial assessment and before the occurrence of any outcome
Area-under-the receiver-operator characteristic of 0·78 (95% CI 0·73–0·82).
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prothrombin time as variables neither improved the 
model’s performance (AUROC 0·80 [0·76–0·84]) nor its 
risk stratification capacity (moderate risk stratum 64·3% 
(709 of 1103; table 3); as there was no significant 
difference between model performance, the model with 
no coagulation variables was chosen as coagulation 
variables are often not available or expensive to obtain if 
not necessary. The original fullPIERS model had poorer 
performance in the combined validation dataset (table 3).

The PIERS-ML model had strong performance in 
ruling out (very low risk and low risk strata) and ruling in 
(high risk and very high risk strata) subsequent seizures 
of eclampsia (table 4). For the 2210 women in the full 
internal validation group, stillbirth risks varied by risk 
strata, such that women at very low risk and low risk of 
adverse maternal events had few stillbirths, whereas 
those at moderate risk had 2·8% (32 of 1148) stillbirths, 
high risk had 11·6% (16 of 138 women) stillbirths, and 
very high risk had 0·0% stillbirths (table 4).

Removing renal and haematological components of the 
outcome did not significantly alter PIERS-ML perfor
mance (appendix pp 10–11). Alternative machine learning 
strategies were considered but did not show improved 
performance (appendix pp 12–14). The complete case 
analysis showed a reduced AUROC but with wider 
confidence intervals that included the AUROC of the 
imputed model. The validation with mean imputation 
had both similar number of patients per risk strata and 
similar number of outcomes as with imputation 
(appendix pp 15–16, 25). 

Discussion
This study included 8843 women from 11 countries 
presenting for first assessment of pre-eclampsia and 
used the random forest method to develop and internally 

validate an 18-variable model for maternal risk 
stratification, applicable for LMICs and high-income 
countries. A further 2901 UK resident women contributed 
data to a fully external validation dataset.

The PIERS-ML model has identified nearly 40% of 
women with pre-eclampsia for whom care should be 
altered. The 29·8% (329 of 1103 women) and their 
families and maternity care providers identified as being 
at very low risk (0·7% [eight of 1103 women]) or low risk 
(29·0% [321 women]) can be reassured that it is very 
unlikely that adverse maternal events will occur within 
2 days. However, for the 8·9% (98 women) identified to 
be a high risk (7·9% [87 women]) or very high risk (1·0% 
[11 women]), a timely clinical response can be justified 
based on a substantial risk of an adverse maternal event 
within 2 days, or for women at very high risk, at any time. 
Identifying these women can inform discussions about 
place of care, transfer of care, antenatal and postnatal 
surveillance, co-interventions, and timed birth.

Strengths of our study include the large sample size, 
which was, to our knowledge, larger than any previous 
study modelling adverse outcomes in women with pre-
eclampsia.5,8,12,20,23 We tested a list of variables with clinical 
external validity and availability, including all target organ 
systems, except for the central nervous system. Clinical 
central nervous system predictors rely on either the 
subjectivity of symptoms or the questionable repro
ducibility of deep tendon reflexes and clonus, particularly 
in pregnancy. Also, the PIERS-ML model does not include 
direct measures of coagulation; these are not routinely 
performed, and their addition neither altered model 
performance nor warranted related costs in women with 
pre-eclampsia. Machine learning is suitable for managing 
many variables, without assumption with respect to 
interactions and mediation, and addresses concerns 

Hypertensive pregnant 
women in stratum 

Hypertensive pregnant women within risk 
stratum with an outcome within 2 days

Hypertensive pregnant women within risk 
stratum with an outcome within 7 days

Hypertensive pregnant women within risk 
stratum with an outcome at any time

N (%) N (%) Likelihood ratios N (%) Likelihood ratio N (%) Likelihood ratio

Eclampsia (N=140 maternal events, AUROC 0·80 [95% CI 0·69–0·91])

Very low risk 8 (0·7%) 0 –LR 0·0 (0·0 to NaN) 0 –LR 0·0 (0·0 to NaN) 0 –LR 0·0 (0·0 to NaN)

Low risk 321 (29·1%) 0 –LR 0·0 (0·0 to NaN) 0 –LR 0·0 (0·0 to NaN) 0 –LR 0·0 (0·0 to NaN)

Moderate risk 676 (61·3%) 3 (0·4%) ·· 3 (0·4%) ·· 2 (0·3%) ··

High risk 87 (7·9%) 2 (2·3%) +LR 5·1 (1·7 to 15·3) 2 (2·3%) +LR 5·1 (1·7 to 15·3) 5 (5·4%) +LR 8·9 (5·3 to 14·8)

Very high risk 11 (1·0%) 1 (9·1%) +LR 18·3 (2·8 to 121·3) 1 (9·1%) +LR 18·3 (2·8 to 121·3) 1 (7·7%) +LR 11·5 (1·7 to 78·3)

Stillbirth (N=50 stillbirths of 1925 women with informative data within the complete validation dataset, AUROC 0·79 [0·74–0·85])

Very low risk 23 (1·2%) 0 –LR 0·0 (0·0 to NaN) 0 –LR 0·0 (0·0 to NaN) 0 –LR 0·0 (0·0 to NaN)

Low risk 601 (31·2%) 1 (0·2%) –LR 0·1 (0·0 to 0·4) 1 (0·2%) –LR 0·1 (0·0 to 0·4) 1 (0·2%) –LR 0·1 (0·0 to 0·4)

Moderate risk 1148 (59·6%) 32 (2·8%) ·· 32 (2·8%) ·· 33 (2·9%) ··

High risk 138 (7·2%) 16 (11·6%) +LR 5·0 (3·2 to 7·7) 16 (11·6%) +LR 5·0 (3·2 to 7·7) 16 (11·6%) +LR 4·9 (3·1 to 7·6)

Very high risk 15 (0·8%) 0 +LR 0·0 (0·0 to NaN) 0 +LR 0·0 (0·0 to NaN) 0 +LR 0·0 (0·0 to NaN)

 Risk strata determined by diagnostic test performances for first occurrence of any component of the primary combined adverse maternal outcome within 2 days: very low risk –LR <0·1; low risk –LR 0·1 to 0·2; 
moderate risk +LR <5·0 and –LR >0·2; high risk +LR 5·0 to 10·0; very high risk +LR >10·0. AUROC=area under the receiver-operator characteristic. Inf=infinity. –LR=negative likelihood ratio. +LR=positive likelihood 
ratio. NaN=not a number. Likelihood ratios are presented in addition to stratification performance as the PIERS-ML model was not developed to predict either of these two outcomes. 

Table 4: Secondary analyses for eclampsia and stillbirth
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regarding collinearity. Trade-offs were considered between 
model performance, complexity, and face validity. In 
addition, machine learning algorithms can use all 
available predictor variables as inputs as variables that are 
not predictive of the outcome will have little to no effect on 
the predicted probabilities. Therefore, a machine learning-
based model with more variables than necessary should 
not have degraded performance in the context of this 
application. However, including unnecessary variables 
means that included variables might not contribute 
substantially to the predictions. To make the model more 
pragmatic in a clinical setting, we have chosen to use 
feature selection to remove unimportant variables 
avoiding unnecessary data collection or clinical tests.

There are significant differences between our PIERS-
ML model and the recently published Charité machine 
learning-based model.23 Schmidt and colleagues23 used 
data from 1647 women with pre-eclampsia admitted to a 
single high-income country institution, and those data 
were modelled against a composite maternal and fetal 
outcome, despite rates of adverse maternal and perinatal 
outcomes not tracking together.24,25 Although they applied 
different machine learning methods, they used 
approximately 24 observations (internally normalised to 
multiples of the median) per candidate variable, compared 
with approximately 230 observations per variable in the 
PIERS-ML dataset. They undertook no imputations, 
thereby assuming that missingness is predictive of either 
outcome or no outcome. In addition, we fitted models 
using ten-fold cross-validation to minimise overfitting 
and validated the model in an independent 12·5% (vs 10% 
from the Charité model) of the dataset. Importantly, our 
risk stratification was data driven in ruling out or ruling 
in the risk of adverse maternal outcomes. The main 
strength of the study by Schmidt and colleagues23 was the 
inclusion of angiogenic markers, whereas the main 
strengths of our study are the diversity of data, the use of 
multiple imputation, and external validation. 

Missing values were common in our dataset; however, 
where appropriate, missingness was handled by multiple 
imputation, with chained random forest to minimise 
bias. Of note, development and validation datasets were 
imputed separately, thereby creating independent model 
development and validation datasets. Some variables 
(namely bilirubin, urinary protein to creatinine ratio, 
international normalised ratio, and lactate dehydro
genase) had to be excluded due to high levels of 
missingness. This limitation reflects current clinical 
practice. Modelling on complete data from a repre
sentative and diverse sample population will always give 
a more accurate result than modelling on a dataset with a 
substantial amount of missingness. However, obtaining 
such a dataset would be very difficult as many of these 
variables are not regularly collected in clinical practice 
from patients with pre-eclampsia, especially close to full 
term. Additionally, international normalised ratio and 
lactate dehydrogenase were not expected to be strong 

predictors, whereas urinary protein to creatinine ratio 
would be anticipated to outperform the readily available 
dipstick proteinuria. 

The composite adverse maternal outcome for the 
PIERS model was Delphi-derived, similarly to the core 
maternal outcome list (iHOPE) for pre-eclampsia.26 

However, there are differences: only PIERS includes 
uncontrolled hypertension, inotropic support, myocardial 
ischaemia or infarction, hepatic dysfunction, or 
transfusion, and only the iHOPE outcome set contains 
elevated liver enzymes, postpartum haemorrhage, and 
admission to intensive care. To confirm model perfor
mance, as some factors are both predictors and com
ponents of the combined outcome (eg, serum creatinine 
and platelet count), we assessed the PIERS-ML model 
excluding renal or haematological components of the 
outcome, or both (appendix pp 10–11).

The PIERS-ML model also proved to be highly effective 
on external validation in a UK resident cohort, achieving 
the predicted outcome rates in the risk classification strata 
expected from internal validation. The model could 
identify women for whom a timely response can be 
justified very well while reassuring women who were 
predicted very low risk who had no outcomes at any point. 
However, the full range of the components of the combined 
maternal outcome were not readily available, and some 
outcomes (eg, renal) were conflated within the dataset as 
those data had been collected previously. Although this 
introduces the possibility of underestimating the outcome 
rate as defined by the original PIERS combined outcome, 
we are confident in the model’s ability to classify into risk 
strata, especially for ruling in outcomes in the high risk 
and very high risk strata. 

Multivariable model-based risk stratification of women 
with pre-eclampsia is recommended by national and 
international clinical practice guidelines.1,27,28 With access to 
full laboratory facilities, models have been based on either 
logistic regression or a survival model for time-to-adverse 
event.8,20 Women with a hypertensive disorder of pregnancy 
(including pre-eclampsia) in LMICs, without ready access 
to laboratory tests, benefit from the demographics, 
symptom, and signed-based miniPIERS model, with 
model performance improved by pulse oximetry.5,29 

The PIERS-ML model improves on previous models in 
several ways. First, to our knowledge, the PIERS-ML 
model is the first model for risk stratification in pre-
eclampsia that has been developed using machine 
learning from women with pre-eclampsia living in 
LMICs (sub-Saharan Africa, South America, south Asia, 
and Oceania—areas of the world where more than 99% 
of pre-eclampsia-related maternal mortality occurs)6 and 
high-income countries. We are unaware of another 
model that has included data from 11 low-income, 
middle-income, and high-income countries.

Uniquely, the model includes national per capita gross 
domestic product and maternal mortality ratio, which are 
variables that adjust for location, avoiding adaptation of 
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models to local outcome rates, particularly in which 
information governance and research resources are 
absent or limited. Adjusting for local settings was 
required for original fullPIERS model validation in 
LMICs.18 Therefore, we were not surprised by the poor 
performance of fullPIERS within this combined dataset. 
This approach to create auto-adjustment for setting 
should be validated in further geographies. 

Second, the PIERS-ML model does not include 
maternal symptoms, the inclusion of which was criticised 
as a weakness of previous models,8 given the subjective 
nature, variable definitions, and inconsistent documen
tation of symptoms in health records. However, mean 
platelet volume, which is a marker of platelet con
sumption and release of immature platelet forms, is 
important within the PIERS-ML model.30 Haematology 
analysers routinely measure, but many laboratories do 
not report, mean platelet volume; our findings suggest 
mean platelet volume should be reported for all 
hypertensive pregnant women.

Third, although the PIERS-ML model does not include 
symptoms of central nervous system involvement, the 
model has clinically-relevant performance in identifying 
women at both least (very low risk and low risk strata) 
and greatest (high risk and very high risk strata) risk of 
developing eclampsia, especially within 7 days of initial 
assessment (table 4). These results could guide the 
targeted use of magnesium sulphate and reduce the 
number-needed-to-treat, for the prevention of eclampsia.31 
Depending on health system resilience, women in the 
moderate risk strata might or might not be considered 
for magnesium sulphate prophylaxis. For women with 
disease onset before 34+⁰ weeks’ gestation, a loading dose 
of magnesium sulphate should be administered to 
reduce the risk of prematurity-related cerebral palsy.32

Fourth, women in the very low risk and low risk strata 
were very unlikely to suffer a stillbirth (table 4), and we 
believe that such women can be appropriately reassured 
by our model. All intrauterine fetal deaths were noted 
within 2 days of admission with pre-eclampsia. However, 
it was notable that the women in the moderate risk and 
high risk strata bore the greatest risk of stillbirth, 
presumably as maternity care providers were sufficiently 
concerned by the condition of women in the very high 
risk stratum to intervene for either maternal or fetal 
indications, or both, or in response to the woman 
experiencing an adverse maternal event. In addition, the 
very high risk stratum had a small sample size; therefore, 
performance in predicting stillbirth could not be 
accurately assessed.

Finally, the PIERS-ML model has been externally 
validated with very good performance in an independent 
cohort of women with pre-eclampsia admitted to 
hospitals that did not participate in the fullPIERS 
development and validation projects, and where neither 
fullPIERS nor miniPIERS were used in routine clinical 
practice.

There are three important lines of investigation that 
follow from our work. The first is that use of this method 
offers the potential for the accuracy of the model to 
improve over time as data accumulate and the model 
learns with regularly scheduled manual updates provided 
to model users. Amassing such data is feasible, as all 
individual-level variables in the PIERS-ML model are part 
of routine clinical and laboratory assessment of women 
with pre-eclampsia in well-resourced settings, and 
available from electronic health records in real-time. The 
second line of investigation is to explore whether addition 
of new markers could improve the PIERS-ML model 
performance. As markers of uteroplacental dysfunction of 
pre-eclampsia, angiogenic markers are used increasingly 
in the investigation of women with suspected pre-
eclampsia, at first presentation, for ongoing surveillance33 
(although performance in trials has been variable34,35), and 
within the Charité model.23 If independently informative, 
angiogenic markers could be incorporated into the model 
during clinical implementation. An ophthalmic artery 
Doppler could provide useful information about the less-
accessible intracranial circulation.36

Third, to determine how best to assess evolving risk 
among women with pre-eclampsia, especially those 
women at moderate risk who will require ongoing, close 
surveillance, particularly during the first 7 days when 
most adverse outcomes occur. PIERS-ML, and other 
models, perform best during the first 2–7 days; women 
with pre-eclampsia could be expectantly managed for up 
to 4 weeks.2 Although repeated risk stratification has 
been recommended,27 future work should examine 
replacing this serial static model approach with a new 
dynamic approach that accounts for changes over time.

The PIERS-ML model uses the power of machine 
learning to develop a new effective risk stratification tool 
for international use. Using only variables routinely 
assessed in pregnant women with pre-eclampsia, this 
tool can stratify women with the condition into clinically-
relevant risk strata, to guide clinical care, and is amenable 
to future inclusion of new biomarkers and predictors.
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